18 research outputs found

    Effect of glucose and insulin supplementation on the isolation of primary human hepatocytes

    Get PDF
    Primary human hepatocytes (PHHs) remain the gold standard for in vitro investigations of xenobiotic metabolism and hepatotoxicity. However, scarcity of liver tissue and novel developments in liver surgery has limited the availability and quality of tissue samples. In particular, warm ischemia shifts the intracellular metabolism from aerobic to anaerobic conditions, which increases glycogenolysis, glucose depletion and energy deficiency. Therefore, the aim of the present study was to investigate whether supplementation with glucose and insulin during PHH isolation could reconstitute intracellular glycogen storage and beneficially affect viability and functionality. Furthermore, the study elucidated whether the susceptibility of the tissue’s energy status correlates with body mass index (BMI). PHHs from 12 donors were isolated from human liver tissue obtained from partial liver resections using a two-step EDTA/collagenase perfusion technique. For a direct comparison of the influence of glucose/insulin supplementation, we modified the setup, enabling the parallel isolation of two pieces of one tissue sample with varying perfusate. Independent of the BMI of the patient, the glycogen content in liver tissue was notably low in the majority of samples. Furthermore, supplementation with glucose and insulin had no beneficial effect on the glycogen concentration of isolated PHHs. However, an indirect improvement of the availability of energy was shown by increased viability, plating efficiency and partial cellular activity after supplementation. The plating efficiency showed a striking inverse correlation with increasing lipid content of PHHs. However, 60 h of cultivation time revealed no significant impact on the maintenance of albumin and urea synthesis or xenobiotic metabolism after supplementation. In conclusion, surgical procedures and tissue handling may decrease hepatic energy resources and lead to cell stress and death. Consequently, PHHs with low energy resources die during the isolation process without supplementation of glucose/insulin or early cell culture, while their survival rates are improved with glucose/insulin supplementation

    Retinal Involvement in a Patient with Cerebral Manifestation of Chronic Graft-Versus-Host-Disease

    Get PDF
    Background: We report a 35-year-old female patient with cerebral manifestations of chronic graft-versus-host disease (cGvHD) and putative retinal involvement after allogeneic peripheral blood stem cell transplantation (alloHSCT). Patient and Methods: The patient experienced recurrent episodes of fever and encephalitic signs 7 months after alloHSCT during taper of immunosuppression (IS). Results: Cerebral magnetic resonance imaging (MRI) showed non-gadolinium-enhancing confluent periventricular lesions and cerebrospinal fluid inflammation. After exclusion of infectious causes, treatment with steroids and antiepileptics improved cognitive deficits. Steroid reduction provoked a relapse responding to IS. 2 years later, she complained of right-sided blurred vision and floaters; both eyes showed whitish circumscribed retinal infiltrations, cellular infiltration of the vitreous and mild bilateral optic disc edema. Oncological and neurological work-up ruled out infectious diseases and other GvHD manifestations. Symptoms and signs resolved under continued systemic IS, leaving pigmented retinal scars. After IS withdrawal, classical cutaneous cGvHD developed, resolving on systemic IS. 94 months after transplantation, she is doing well. Conclusion: To our knowledge, this is the first observation of retinal involvement of cerebral cGvHD manifestations with retinal infiltrations documented in the absence of other causes and in parallel to periventricular lesions in cerebral MRI. Based on bone marrow histology, we discuss a small vessel pathophysiology of cGvHD

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis

    Influence of Hedgehog signaling and starvation on selected aspects of liver metabolism

    Get PDF
    The liver is the central metabolic hub in organisms and a complex, intertwining regulatory network guarantees efficient liver processes. The morphogenic Hedgehog pathway was recently shown to play a role in regulating the underlying genetic program. Transgenic mouse models with hepatocyte-specific inactivation of Hedgehog signaling showed alterations in insulin-like growth factor homeostasis and in energy metabolism associated with increased lipid accumulation in the liver. In this thesis, it was possible to connect the observed infertility of female knockout mice with an unexpected activation of sex steroid synthesis in the liver. Associated with increased steroidogenic gene expression exclusively in hepatocytes, the plasma testosterone level was significantly elevated, which led to androgenization and an anovulatory phenotype. With these characteristics, the mouse model mimicked the human polycystic ovarian syndrome and suggested an influence of liver and hepatic Hedgehog signaling on reproduction under disease conditions. Further, murine liver metabolism was challenged with starvation starting at different times of day. The transcriptomic results were analyzed with a self-organizing map approach, allowing an intuitive interpretation of data and a thus far unknown diurnally different response of hepatic regulatory mechanisms due to starvation was revealed. In contrast to the manifoldly published and observed switch from energy-consuming to energy-providing processes due to starvation started in the morning, evening starvation led to a novel hepatic expression signature with decreased gluconeogenic gene expression and increased levels of lipid and steroid metabolism-related genes. These differences can be explained by the equally diurnally regulated expression of the corresponding regulatory transcription factors and hormones. Additionally, lipidome analysis confirmed the diurnal differences after starvation. Thus, this study emphasized the immense impact of circadian regulation on liver metabolism and suggests high accuracy when starvation is the focus of research to avoid varying results.:BIBLIOGRAPHISCHE DARSTELLUNG ................................................................................ II LIST OF ABBREVIATIONS .................................................................................................. III TABLE OF CONTENTS ....................................................................................................... IV SUMMARY ............................................................................................................................ 1 ZUSAMMENFASSUNG ......................................................................................................... 5 INTRODUCTION ................................................................................................................... 9 Liver architecture and metabolism ..................................................................................... 9 Diverse possibilities of liver metabolism regulation .......................................................... 10 Connection of Hedgehog signaling to hepatic metabolism ............................................... 10 Impact of feeding schemes on hepatic metabolism .......................................................... 13 Aims of the thesis ............................................................................................................ 14 References ...................................................................................................................... 15 CHAPTER 1 ........................................................................................................................ 18 CHAPTER 2 ........................................................................................................................ 39 PERSPECTIVE ................................................................................................................... 64 CURRICULUM VITAE ........................................................................................................... V PUBLICATIONS AND PRESENTATIONS ............................................................................ VI Publications ...................................................................................................................... VI Oral presentations ............................................................................................................ VI Poster presentations ........................................................................................................ VII AUTHOR CONTRIBUTION STATEMENT .......................................................................... VIII SELBSTSTÄNDIGKEITSERKLÄRUNG .............................................................................. XII DANKSAGUNG .................................................................................................................. XII

    Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress

    No full text
    Overweight has become a major health care problem in Western societies and is accompanied by an increasing incidence and prevalence of non-alcoholic fatty liver disease (NAFLD). The progression from NAFLD to non-alcoholic steatohepatitis (NASH) marks a crucial tipping point in the progression of severe and irreversible liver diseases. This study aims to gain further insight into the molecular processes leading to the evolution from steatosis to steatohepatitis. Steatosis was induced in cultures of primary human hepatocytes by continuous five-day exposure to free fatty acids (FFAs). The kinetics of lipid accumulation, lipotoxicity, and oxidative stress were measured. Additionally, ER stress was evaluated by analyzing the protein expression profiles of its key players: PERK, IRE1a, and ATF6a. Our data revealed that hepatocytes are capable of storing enormous amounts of lipids without showing signs of lipotoxicity. Prolonged lipid accumulation did not create an imbalance in hepatocyte redox homeostasis or a reduction in antioxidative capacity. However, we observed an FFA-dependent increase in ER stress, revealing thresholds for triggering the activation of pathways associated with lipid stress, inhibition of protein translation, and apoptosis. Our study clearly showed that even severe lipid accumulation can be attenuated by cellular defenses, but regenerative capacities may be reduced

    Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress

    No full text
    Overweight has become a major health care problem in Western societies and is accompanied by an increasing incidence and prevalence of non-alcoholic fatty liver disease (NAFLD). The progression from NAFLD to non-alcoholic steatohepatitis (NASH) marks a crucial tipping point in the progression of severe and irreversible liver diseases. This study aims to gain further insight into the molecular processes leading to the evolution from steatosis to steatohepatitis. Steatosis was induced in cultures of primary human hepatocytes by continuous five-day exposure to free fatty acids (FFAs). The kinetics of lipid accumulation, lipotoxicity, and oxidative stress were measured. Additionally, ER stress was evaluated by analyzing the protein expression profiles of its key players: PERK, IRE1a, and ATF6a. Our data revealed that hepatocytes are capable of storing enormous amounts of lipids without showing signs of lipotoxicity. Prolonged lipid accumulation did not create an imbalance in hepatocyte redox homeostasis or a reduction in antioxidative capacity. However, we observed an FFA-dependent increase in ER stress, revealing thresholds for triggering the activation of pathways associated with lipid stress, inhibition of protein translation, and apoptosis. Our study clearly showed that even severe lipid accumulation can be attenuated by cellular defenses, but regenerative capacities may be reduced

    Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress

    No full text
    Overweight has become a major health care problem in Western societies and is accompanied by an increasing incidence and prevalence of non-alcoholic fatty liver disease (NAFLD). The progression from NAFLD to non-alcoholic steatohepatitis (NASH) marks a crucial tipping point in the progression of severe and irreversible liver diseases. This study aims to gain further insight into the molecular processes leading to the evolution from steatosis to steatohepatitis. Steatosis was induced in cultures of primary human hepatocytes by continuous five-day exposure to free fatty acids (FFAs). The kinetics of lipid accumulation, lipotoxicity, and oxidative stress were measured. Additionally, ER stress was evaluated by analyzing the protein expression profiles of its key players: PERK, IRE1a, and ATF6a. Our data revealed that hepatocytes are capable of storing enormous amounts of lipids without showing signs of lipotoxicity. Prolonged lipid accumulation did not create an imbalance in hepatocyte redox homeostasis or a reduction in antioxidative capacity. However, we observed an FFA-dependent increase in ER stress, revealing thresholds for triggering the activation of pathways associated with lipid stress, inhibition of protein translation, and apoptosis. Our study clearly showed that even severe lipid accumulation can be attenuated by cellular defenses, but regenerative capacities may be reduced

    Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress

    No full text
    Overweight has become a major health care problem in Western societies and is accompanied by an increasing incidence and prevalence of non-alcoholic fatty liver disease (NAFLD). The progression from NAFLD to non-alcoholic steatohepatitis (NASH) marks a crucial tipping point in the progression of severe and irreversible liver diseases. This study aims to gain further insight into the molecular processes leading to the evolution from steatosis to steatohepatitis. Steatosis was induced in cultures of primary human hepatocytes by continuous five-day exposure to free fatty acids (FFAs). The kinetics of lipid accumulation, lipotoxicity, and oxidative stress were measured. Additionally, ER stress was evaluated by analyzing the protein expression profiles of its key players: PERK, IRE1a, and ATF6a. Our data revealed that hepatocytes are capable of storing enormous amounts of lipids without showing signs of lipotoxicity. Prolonged lipid accumulation did not create an imbalance in hepatocyte redox homeostasis or a reduction in antioxidative capacity. However, we observed an FFA-dependent increase in ER stress, revealing thresholds for triggering the activation of pathways associated with lipid stress, inhibition of protein translation, and apoptosis. Our study clearly showed that even severe lipid accumulation can be attenuated by cellular defenses, but regenerative capacities may be reduced
    corecore