113 research outputs found

    Cost-Benefit Analysis of Phase Balancing Solution for Data-scarce LV Networks by Cluster-Wise Gaussian Process Regression

    Get PDF

    Cost-Benefit Analysis of Phase Balancing Solution for Data-scarce LV Networks by Cluster-Wise Gaussian Process Regression

    Get PDF
    Phase imbalance widely exists in the UK’s low voltage (415V, LV) distribution networks. The imbalances not only lead to insufficient use of LV network assets but also cause energy losses. They lead to hundreds of millions of British pounds each year in the UK. The cost-benefit analyses of phase balancing solutions remained an unresolved question for the majority of the LV networks. The main challenge is data-scarcity – these networks only have peak current and total energy consumption that are collected once a year. To perform a cost-benefit analysis of phase balancing for data-scarce LV networks, this paper develops a customized cluster-wise Gaussian process regression (CGPR) approach. The approach estimates the total cost of phase imbalance for any data-scarce LV network by extracting knowledge from a set of representative data-rich LV networks and extrapolating the knowledge to any data-scarce network. The imbalance-induced cost is then translated into the benefit from phase balancing and this is compared against the costs of phase balancing solutions, e.g. deploying phase balancers. The developed CGPR approach assists distribution network operators (DNOs) to evaluate the cost-benefit of phase balancing solutions for data-scarce networks without the need to invest in additional monitoring devices

    Specialized Re-Ranking: A Novel Retrieval-Verification Framework for Cloth Changing Person Re-Identification

    Full text link
    Cloth changing person re-identification(Re-ID) can work under more complicated scenarios with higher security than normal Re-ID and biometric techniques and is therefore extremely valuable in applications. Meanwhile, higher flexibility in appearance always leads to more similar-looking confusing images, which is the weakness of the widely used retrieval methods. In this work, we shed light on how to handle these similar images. Specifically, we propose a novel retrieval-verification framework. Given an image, the retrieval module can search for similar images quickly. Our proposed verification network will then compare the input image and the candidate images by contrasting those local details and give a similarity score. An innovative ranking strategy is also introduced to take a good balance between retrieval and verification results. Comprehensive experiments are conducted to show the effectiveness of our framework and its capability in improving the state-of-the-art methods remarkably on both synthetic and realistic datasets.Comment: Accepted by Pattern Recognitio

    An Automated Analyzer for Financial Security of Ethereum Smart Contracts

    Full text link
    At present, millions of Ethereum smart contracts are created per year and attract financially motivated attackers. However, existing analyzers do not meet the need to precisely analyze the financial security of large numbers of contracts. In this paper, we propose and implement FASVERIF, an automated analyzer for fine-grained analysis of smart contracts' financial security. On the one hand, FASVERIF automatically generates models to be verified against security properties of smart contracts. On the other hand, our analyzer automatically generates the security properties, which is different from existing formal verifiers for smart contracts. As a result, FASVERIF can automatically process source code of smart contracts, and uses formal methods whenever possible to simultaneously maximize its accuracy. We evaluate FASVERIF on a vulnerabilities dataset by comparing it with other automatic tools. Our evaluation shows that FASVERIF greatly outperforms the representative tools using different technologies, with respect to accuracy and coverage of types of vulnerabilities

    Virtual k -Space Modulation Optical Microscopy

    Get PDF
    We report a novel superresolution microscopy approach for imaging fluorescence samples. The reported approach, termed virtual k-space modulation optical microscopy (VIKMOM), is able to improve the lateral resolution by a factor of 2, reduce the background level, improve the optical sectioning effect and correct for unknown optical aberrations. In the acquisition process of VIKMOM, we used a scanning confocal microscope setup with a 2D detector array to capture sample information at each scanned x-y position. In the recovery process of VIKMOM, we first modulated the captured data by virtual k-space coding and then employed a ptychography-inspired procedure to recover the sample information and correct for unknown optical aberrations. We demonstrated the performance of the reported approach by imaging fluorescent beads, fixed bovine pulmonary artery endothelial (BPAE) cells, and living human astrocytes (HA). As the VIKMOM approach is fully compatible with conventional confocal microscope setups, it may provide a turn-key solution for imaging biological samples with ∼100  nm lateral resolution, in two or three dimensions, with improved optical sectioning capabilities and aberration correcting.National Institutes of Health (U.S.) (9P41EB015871-26A1)National Institutes of Health (U.S.) (1R01HL121386-01A1

    Association between Vitamin D Supplementation and Cancer Mortality: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Vitamin D deficiency is related to increased cancer risk and deaths. However, whether vitamin D supplementation reduces cancer mortality remains unclear, and several randomized controlled trials yield inconsistent results. Methods: Medline, Embase, and the Cochrane Central Register of Controlled Trials were searched from their inception until 28 June 2022, for randomized controlled trials investigating vitamin D supplementation. Pooled relative risks (RRs) and their 95% confidence intervals (CIs) were estimated. Trials with vitamin D supplementation combined with calcium supplementation versus placebo alone and recruiting participants with cancer at baseline were excluded in the present study. Results: This study included 12 trials with a total of 72,669 participants. Vitamin D supplementation did not reduce overall cancer mortality (RR 0.96, 95% CI 0.80-1.16). However, vitamin D supplementation was associated with a reduction in lung cancer mortality (RR 0.63, 95% CI 0.45-0.90). Conclusions: Vitamin D supplementation could not reduce cancer mortality in this highly purified meta-analysis. Further RCTs that evaluate the association between vitamin D supplementation and total cancer mortality are still needed

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Numerical Investigation on Hydrodynamic Performance of a Portable AUV

    No full text
    This paper conducts a numerical investigation on the hydrodynamic performance of a portable autonomous underwater vehicle (AUV). The portable AUV is designed to cruise and perform some tasks autonomously in the underwater world. However, its dynamic performance is strongly affected by hydrodynamic effects. Therefore, it is crucial to investigate the hydrodynamic performance of the portable AUV for its accurate dynamic modeling and control. In this work, based on the designed portable AUV, a comprehensive hydrodynamic performance investigation was conducted by adopting the computational fluid dynamics (CFD) method. Firstly, the mechanical structure of the portable AUV was briefly introduced, and the dynamic model of the AUV, including the hydrodynamic term, was established. Then, the unknown hydrodynamic coefficients in the dynamic model were estimated through the towing experiment and the plane-motion-mechanism (PMM) experiment simulation. In addition, considering that the portable AUV was affected by wave forces when cruising near the water surface, the influence of surface waves on the hydrodynamic performance of the AUV under different wave conditions and submerged depths was analyzed. Finally, the effectiveness of our method was verified by experiments on the standard models, and a physical experiment platform was built in this work to facilitate hydrodynamic performance investigations of some portable small-size AUVs
    corecore