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ABSTRACT: Errors in air pollution exposure assessment are
often considered as a major limitation in epidemiological studies.
However, it is difficult to obtain accurate personal level exposure
on cohort populations due to the often prohibitive expense.
Personal exposure estimation models are used in lieu of direct
personal exposure measures but still suffer from issues of
availability and accuracy. We aim to establish a personal PM2.5
exposure assessment model for a cohort population and assess its
performance by applying our model on cohort subjects. We
analyzed data from representative sites selected from the
subclinical outcomes of polluted air in China (SCOPA-China)
cohort study and established a random forest model for estimating
daily PM2.5 personal exposure. We also applied the model among
subjects recruited in the project mentioned above within the same area and study period to estimate the reliability of the model. The
established model showed a good fit with an R2 of 0.81. The model application results showed similar patterns with empirically
measured data. Our pilot study provided a validated and feasible modeling approach for assessing daily personal PM2.5 exposure for
large cohort populations. The promising model framework can improve PM2.5 exposure assessment accuracy for future
environmental health studies of large populations.
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■ INTRODUCTION

Exposure measurement error in fine particulate matter
[particles with an aerodynamic diameter of ≤2.5 μm
(PM2.5)] has long been considered as a limitation of air
pollution epidemiological studies.1,2 Early epidemiological
studies tended to use particle concentrations from the nearest
fixed monitoring stations to represent exposure levels of study
subjects,3,4 and the ambient concentration is important for the
evaluation of population health effects.5 However, the
monitored ambient concentrations could show large differ-
ences compared to personal PM2.5 exposure measurements,6,7

indicating that PM2.5 concentrations from fixed monitoring
stations may serve as a poor proxy for personal exposure.
Furthermore, using fixed site monitoring data as a substitution
for direct personal exposure measures may introduce errors
into the effect estimates of epidemiological studies,8,9

indicating that inaccurate exposure assessment can bias effect
estimates toward the null10,11 or even lead to invalid
inferences.12 Therefore, it is worth studying and has important
supporting significance for establishing the relationship
between personal exposure and ambient exposure, and
accurately assessing personal PM2.5 exposure is critical for

minimizing exposure measurement error for epidemiological
studies.
Cohorts are important epidemiological study designs with

the benefits of often having sufficient power for health effect
analysis, as well as reflecting the heterogeneity of a target
population.13 However, due to the prohibitive costs and
intense resource demands, air pollution prediction models are
often used as a practical solution for exposure assessment.
Previous cohort studies established estimation models as a
proxy for exposure,14 and some models can obtain PM2.5

concentrations at the individual level.15 However, these
modeling methods need to measure indoor pollutants and
observe housing characteristics,16 which are difficult to apply to
large populations. Most previous personal exposure model
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assessment studies used sophisticated model input parame-
ters,17 and the coefficients were difficult to generalize in large
study populations such as cohorts.
Recent studies have built personal exposure estimation

models in small scale populations, which provide a preliminary
foundation for more advanced modeling methods.18−20 The
studies attempted to facilitate the obtaining of model
monitoring parameters, yet the model still has various
shortcomings such as large estimation errors that lead to
deficiencies in accuracy.18,19 Some studies included activity
pattern information and used linear regression to model the
relationship between PM2.5 personal exposure concentration
and multiple variables.18,19 However, the studies either lacked
model validation or had low predictive accuracy, where the R2

of testing data is unsatisfactory. Moreover, the predictors
included in the models, such as meteorological variables, were
found to have a nonlinear relationship with PM2.5 concen-
tration,20 indicating that linear regression may not be the best
approach. Considering these shortcomings, it is important to
employ improved assessment methods to address the problems
described above. Random forest models have been recently
applied to estimate the spatiotemporal distribution of
pollutants,21−23 provided reliable performance,24 and also
have the ability to capture nonlinear relationships of variables.
The successful applications of random forest models in other
settings make it a promising method for establishing personal
exposure estimation for large population studies.
This study aims to establish a daily personal PM2.5 exposure

assessment model that can be applied for a large cohort
population and evaluate model performance by applying the
established model to a representative air pollution cohort in
China.

■ MATERIALS AND METHODS

Study Subjects and Collection of Data. Our study was
based on the subclinical outcomes of polluted air in China
(SCOPA-China) cohort.25 The location of the study sites is
shown in Figure S1. The cohort selected a study period of
nonheating seasons from September to December 2017 and
2018 and selected nine communities of urban areas in eight
provinces, with 214 subjects included. The selection of the
study sites included different latitudes, climate types, and
geographic regions. The study subjects were 40−89 years of
age with a sex ratio of approximately 1:1 and were healthy with
no smoking habits. The cohort obtained approvals (2017016
and 201820) from the ethics committee of the National
Institute of Environmental Health, Chinese Center for Disease
Control and Prevention (NIEH, China CDC).
Subjects in our study were instructed to carry a personal

PM2.5 exposure monitor (MicroPEM) for 3 days. The
MicroPEM monitors were calibrated with fixed site monitors
before each visit. During the 3 day study period, subjects were
instructed to document their daily activities. We collected
baseline information about subjects from community surveys
and questionnaires. Ambient PM2.5 concentrations, as well as
meteorological parameters, were documented from the nearest
monitoring stations of the residential communities of the
subjects. The monitoring and meteorological data were
matched and processed as daily average values, and data of
each monitoring day of each subject were treated as an
independent data record, with a total of 579 entries included in
our study.

Model Establishment. Random forest models consist of
regression trees for obtaining average prediction results of
multiple subsample sets through several rounds of training.21,26

The method was applied in our study to predict daily PM2.5
personal exposure concentrations by parameters such as basic
information about sites and populations, living conditions,
outdoor conditions, and temporal activity patterns. Model
parameters were prescreened using the Boruta algorithm
before model establishment (https://CRAN.R-project.org/
package=Boruta). The filtering algorithm can reduce the
misleading impact of random fluctuations and correlations by
adding randomness to the system and collecting results from
the ensemble of randomized samples.27 Detailed information
about the selected variables is presented in Table S1. The
study data were separated randomly into two data sets, with
90% of the data served as training data and 10% as testing data.
Model sensitivity analyses were conducted through each stage
of cross validation on the basic parameters of the random
forest model, which included the number of variables tried at
each split (mtry) and the number of trees (ntree) to ensure the
reliability of the model, which followed the principle of
gridsearch.28,29 The accuracy of our model was verified by 10-
fold cross-validation. The contributions of selected parameters
to prediction results were assessed by impurity-based feature
importance, which serves as an indicator of variable
importance.

Model Validation and Application.We used the Bland−
Altman method to assess the validation of the established
model.30 The number of paired measurements that were
beyond the 95% limit of agreement reflected the performance
of model prediction. Additionally, the testing data set was
applied in the established model, and we used linear regression
to evaluate the fit of observed and predicted concentrations.
We also conducted additional sensitivity analysis. As each of

the study sites represents typical geographical regions, to
maintain the unique nature of the geographical region, we
randomly chose 90% of data from each of the study areas to
form a training data set. The rest of the data formed a testing
data set. From this analysis, we aimed to spatially validate the
accuracy of the model. To further verify the accuracy of
personal exposure prediction model results compared to
outdoor monitoring and modeling concentrations, we
compared the differences between personal monitoring
concentrations and outdoor monitoring concentrations, out-
door modeling concentrations, and personal modeling
prediction concentrations, respectively. The outdoor modeling
concentrations were from the full coverage ground level PM2.5
0.01 degree data of the CHAP data product (China-
HighPM2.5).

32,33 We also establish the prediction model by
using the top 20 important predictors and tested the model
performance as further sensitive analysis.
The established model was applied among the subjects

recruited in the project mentioned above from the same study
areas during the same study period. We used the established
model on the cohort data set and obtained the ratio between
monitored PM2.5 personal exposure concentration and
monitored ambient concentration from the data set that
underwent personal exposure assessment and the ratio
between predicted personal exposure concentration and
monitored ambient concentration from the application data
set. We also analyzed the distribution of the ratios to
investigate the difference between personal exposure and
ambient concentrations.
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■ RESULTS AND DISCUSSION
In this study, 51 variables were selected in the model by the
filtering of the Boruta algorithm. Detailed descriptions are
listed in Table 1. During the study period, the average daily

ambient PM2.5 concentration was 49.5 μg/m3. The feature
importance of the top 20 model parameters of the established
random forest model is shown in Figure 1.
Outdoor conditions proved to make a large contribution to

personal exposure in our study, and ambient PM2.5
concentrations contributed the most in the established
model. Systematic review studies reported that outdoor

sources can contribute 33−55% of total personal PM2.5
exposure, indicating a large proportion of the contribution to
personal exposure.34 Our study found that the feature
importance by ambient PM2.5 ranks first, which indicates that
ambient PM2.5 contributed the most to personal exposure. The
high rank of the ambient concentration indicated that ambient
particle pollution contributes greatly to personal particle
exposure. Temperature variables ranked within the top 20 of
feature importance, which may be due to the effects of
temperature on indoor and outdoor air exchange rates.18,35

Other meteorological variables such as daily maximum wind
speed also ranked high in feature importance, which may be
related to the influence of the wash-off effects of particle air
pollution,36 which indicated wind might reduce the concen-
tration of pollutants.
The number of cigarettes from indoor passive smoking

ranked second in the feature importance, which agrees with
previous studies of indoor particulate pollution.37,38 Indoor
concentrations of PM2.5 with household smokers could reach
approximately 2.5 times the concentrations of PM2.5 when no
smoking was reported,39 indicating the importance of passive
smoking as a particle source. The window opening range
conditions of parlors and bedrooms during weekdays and
weekend and kitchen ventilator use contributed greatly to
feature importance. This finding together with previous indoor
air quality studies40 shows that the ventilation of indoor air
could drastically reduce particle concentrations.
Daily activities, including commuting duration, sleeping

duration, and duration being indoors, also ranked highly in the
feature importance, which supports the influence of the time
spent in different microenvironments on personal particle
exposure. Our study suggests that it is important to take the

Table 1. Descriptive Statistics of Outdoor and Personal
Exposure Variables

mean SDa min max medium

precipitation 20−20 h
(0.1 mm)

0.6 2.4 0.0 20.0 0.0

RH meanb (%) 62.7 17.6 27.0 93.0 65.0
RH minc (%) 41.4 17.3 15.0 74.0 42.0
temperature mean (°C) 14.1 4.5 5.5 24.4 13.9
temperature max (°C) 19.3 4.2 9.7 28.2 19.2
temperature min (°C) 10.1 5.4 0.1 22.9 9.8
wind speed mean (m/s) 1.6 0.5 0.4 2.7 1.7
wind maxd (m/s) 3.7 1.0 2.2 7.6 3.7
wind greate (m/s) 6.9 1.7 3.7 14.2 6.6
ambient PM2.5 (μg/m

3) 49.5 37.4 8.0 195.0 40.8
personal PM2.5 (μg/m

3) 36.8 29.1 0.5 314.6 28.5
aStandard deviation. bMean relative humidity. cMinimum relative
humidity. dMaximum value of the 10 min average wind speed.
eMaximum value of the instantaneous wind speed in a given period.

Figure 1. Importance ranking of the top 20 selected variables. Abbreviations: Weekend parlor N, duration of windows being closed in the parlor
during the weekend; Weekday bedroom N1, duration of windows being closed in the bedroom during weekdays; Weekend parlor S3, duration of
windows being more than two-thirds open in the parlor during the weekend; Wind max, maximum value of the 10 min average wind speed; Wind
great, maximum value of the instantaneous wind speed in a given period.
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time spent in different microenvironments into consideration

when estimating the personal exposure level in epidemiological

studies. The model establishment and sensitivity analysis

results are shown in Figures S2−S8. Linear regression results of
the predicted and observed PM2.5 concentrations are shown in

Figure 2. The linear regression analysis afforded an R2 of 0.81
and a slope of 1.09.
Comparisons among ambient monitored, personal moni-

tored, and personal predicted PM2.5 exposure concentrations
are shown in Figure 3. The ratios were below the line of 1:1
with ambient concentrations of >50 μg/m3, and ratios

Figure 2. Linear fitting results of the predicted and observed concentrations using testing data. The gray shaded area indicates the 95% confidence
interval for the fitted linear regression line.

Figure 3. Comparison among ambient monitored, personal monitored, and personal predicted PM2.5 concentrations. Black dots represent the
ratios of monitored personal PM2.5 to ambient concentration, while the red asterisks represent the ratio of personal predicted PM2.5 concentration
to ambient monitored concentrations.
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increased at lower ambient concentrations. The pattern of the
monitored ratio and predicted ratio was similar to that at
increasing ambient concentrations. Linear regression analysis
between outdoor particle concentration and personal exposure
concentration is shown in Table S2. The slope of the linear
regression of personal exposure and ambient concentration was
0.46.
Our work showed a higher model fit compared to those of

previous studies. Previous PM2.5 modeling studies used
multiple statistical methods, including leave-one-out cross-
validation (LOOCV) analysis and 10-fold CV analysis, to
assess model fit, with R2 values reaching 0.759 and 0.730,18

respectively. The linear regression results from our random
forest model showed an R2 of 0.81 and a slope of 1.09,
indicating a good model fit. Furthermore, previous studies
suggested that meteorological variables such as temperature
and relative humidity showed nonlinear relationships with
PM2.5 concentrations.

20 The random forest model was used to
reveal the nonlinear relationship and was reported to show
better model performance compared to linear regression
models of the same study design.31,41

The validation and feasibility of the model application are
the highlights of our study. The parameters in our study were
obtained through environmental monitoring sites, meteoro-
logical stations, and questionnaires, which are typically
accessible variables in cohort studies and increase the feasibility
of using the model. Moreover, we conducted sensitivity
analysis to estimate the predictive performance and the validity
of the model. In our study, the study sites were chosen from
typical geographical regions, and there was only one study site
from each geographical region. The sensitive analysis ensured
the model performance among the typical regions. The linear
regression results showed that the model can be used among
the geographical regions mentioned above.
Additionally, the performance of the established model was

further discussed with respect to the application data set with
the same variable information. The ratio values of predicted
personal exposure and monitored personal exposure to
monitored outdoor exposure concentrations were similar,
which strongly supports the accuracy of the model. Personal
exposure levels were generally higher than ambient levels when
ambient particle concentrations were low, and the trend was
consistent with the reviewed results reported in previous
studies.42

There are several limitations of our study. First, the study
period was relatively short compared to that of large cohort
studies. Future studies with a longer study period should
include the entire heating season. Second, as a classical
problem of prediction analysis in both statistical models21,43

and dynamical models,44 our model found it difficult to
capture extreme values, which may be due to the simplicity of
the study subjects. Future studies should include more diverse
subjects in a larger age range, subjects from rural areas, and
active smokers to improve model applicability. Third, although
our study contained data from eight provinces, the study sites
were still relatively limited. Future studies should include sites
at different economic levels and a variety of climatic zones to
ensure regional representation and improved spatial validation.
Fourth, because 70% of the study subjects were retired or
unemployed in our study (Table S1) and the activity areas
were around the residence areas, we used the monitoring site
closest to their residential areas to represent ambient
concentrations in the model. Future studies with more diverse

subjects could include ambient concentrations around work
places in the model for further analysis. Fifth, the feature
importance used in our analysis can indicate a certain variable
has strong effects on the target variable, yet to explain how the
feature variables affect the target variables, there would need to
be additional analysis such as Shapley value estimation to
further determine the modes of the effect of the feature
variables in future studies.
Our work is a pilot study aimed at establishing a daily PM2.5

personal exposure assessment model in a cohort population of
typical geographical regions using a random forest model. The
established model can reduce research costs associated with
field monitoring of individual level exposure measurements
and provide a better understanding of the contributions of
indoor and outdoor parameters to personal exposure
concentrations. To the best of our knowledge, this is the first
study using a random forest model approach to obtain personal
PM2.5 exposure estimation for a cohort population. The
validation and feasibility of the model enable it to be easily
replicated on cohort studies of large populations with
questionnaire and station monitoring data. Our work provided
a possible approach for estimating personal exposure levels and
revealed a method for refined individual level exposure
assessment of the public. Our model can be further applied
in environmental health studies of cohort populations and
reduce potential exposure assessment bias of epidemiological
effect estimates.
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