272 research outputs found

    Effects of color superconductivity on the structure and formation of compact stars

    Get PDF
    We show that if color superconducting quark matter forms in hybrid or quark stars it is possible to satisfy most of recent observational boundaries on masses and radii of compact stellar objects. An energy of the order of 105310^{53} erg is released in the conversion from a (metastable) hadronic star into a (stable) hybrid or quark star in presence of a color superconducting phase. If the conversion occurs immediately after the deleptonization of the proto-neutron star, the released energy can help Supernovae to explode. If the conversion is delayed the energy released can power a Gamma Ray Burst. A delay between the Supernova and the subsequent Gamma Ray Burst is possible, in agreement with the delay proposed in recent analysis of astrophysical data.Comment: 4 pages, 2 figures. To be published in Phys.Rev.

    Astrophysical Reaction Rates for 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be From a Direct Model

    Full text link
    The reactions 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be are studied at thermonuclear energies using DWBA calculations. For both reactions, transitions to the ground states and first excited states are investigated. In the case of 10^{10}B(p,α\alpha)7^{7}Be, a resonance at ERes=10E_{Res}=10 keV can be consistently described in the potential model, thereby allowing the extension of the astrophysical SS-factor data to very low energies. Strong interference with a resonance at about ERes=550E_{Res}=550 keV require a Breit-Wigner description of that resonance and the introduction of an interference term for the reaction 10^{10}B(p,α1\alpha_1)7^{7}Be^*. Two isospin T=1T=1 resonances (at ERes1=149E_{Res1}=149 keV and ERes2=619E_{Res2}=619 keV) observed in the 11^{11}B+p reactions necessitate Breit-Wigner resonance and interference terms to fit the data of the 11^{11}B(p,α\alpha)8^{8}Be reaction. SS-factors and thermonuclear reaction rates are given for each reaction. The present calculation is the first consistent parametrization for the transition to the ground states and first excited states at low energies.Comment: 27 pages, 5 Postscript figures, uses RevTex and aps.sty; preprint also available at http://quasar.physik.unibas.ch/ Phys. Rev. C, in pres

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    Relationship between CD4 T cell turnover, cellular differentiation and HIV persistence during ART

    Get PDF
    The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO

    Full text link
    Gamma-ray bursts are believed to originate in core-collapse of massive stars. This produces an active nucleus containing a rapidly rotating Kerr black hole surrounded by a uniformly magnetized torus represented by two counter-oriented current rings. We quantify black hole spin-interactions with the torus and charged particles along open magnetic flux-tubes subtended by the event horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii) aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al. 2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating LIGO/Virgo detectors enables searches for nearby events and their spectral closure density 6e-9 around 250Hz in the stochastic background radiation in gravitational waves. At current sensitivity, LIGO-Hanford may place an upper bound around 150MSolar in GRB030329. Detection of Egw thus provides a method for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore