Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49