48 research outputs found

    N-Acetylation phenotype and genotype and risk of bladder cancer in benzidine-exposed workers

    Get PDF
    Several studies in subjects occupationally exposed to arylamine carcinogens have shown increased risks for bladder cancer associated with the slow acetylator phenotype. To follow up these reports, a case-control study of N-acetylation and bladder cancer risk was carried out among subjects occupationally exposed to benzidine, in benzidine dye production and use facilities in China. Thirty-eight bladder cancer cases and 43 controls from these factories were included for study of acetylation phenotype, by dapsone administration, and for polymorphisms in the NAT2 gene, by a polymerase chain reaction (PCR)-based test. In contrast to previous studies, no increase in bladder cancer risk was found for the slow N-acetylation phenotype (OR= 0.3; 95% CI = 0.1-1.3) or for slow N-acetylation-associated double mutations in NAT2 (OR = 0.5; 95% CI = 0.1-1.8). Examination of specific mutations and adjustment for age, weight, city and tobacco use did not alter the results. When examined by level of benzidine exposure in the cases, the bladder cancer risks associated with low (OR = 0.3, 95% CI = 0.0-2.2), medium (OR = 0.7, 95% CI = 0.1-4.5) and high (OR = 0.6, 95% CI = 0.1-3.5) exposure showed no interaction between genotype and benzidine exposure, within the range of exposures experienced by subjects in this study. This study, which is the first to incorporate phenotypic and genotypic analyses, provides evidence that the NAT2-related slow N-acetylation polymorphism is not associated with an increased risk of bladder cancer in workers exposed to benzidine, and may have a protective effec

    Electrophysiologic actions of high plasma concentrations of propranolol in human subjects

    Get PDF
    The authors have previously shown that 40% of patients whose ventricular arrhythmias respond to propranolol require plasma concentrations in excess of those producing substantial beta-receptor blockade (> 150 ng/ml). However, the electrophysiologic actions of propranolol have only been examined in human beings after small intravenous doses achieving concentrations of less than 100 ng/ml. In this study, the electrophysiologic effects of a wider concentration range of propranolol was examined in nine patients. Using a series of loading and maintenance infusions, measurements were made at baseline, at low mean plasma propranolol concentrations (104 ± 17 ng/ml) and at high concentrations (472 ± 68 ng/ml). Significant (p < 0.05) increases in AH interval and sinus cycle length were seen at low concentrations of propranolol, with no further prolongation at the high concentrations; these effects are typical of those produced by beta-blockade. However, progressive shortening of the endocardial monophasic action potential duration and QTc interval were seen over the entire concentration range tested (p < 0.05). At high concentrations, there was significant (p < 0.05) further shortening of both the QTc and monophasic action potential duration beyond that seen at low propranolol concentrations, along with a progressive increase in the ratio of the ventricular effective refractory period to monophasic action potential duration. No significant changes were seen in HV interval, QRS duration or ventricular effective refractory period.In summary, the concentration-response relations for atrioventricular conductivity and sinus node automat-icity were flat above concentrations of 150 ng/ml. On the other hand, the durations of the monophasic action potential and the QTc interval shortened at high concentrations. It is concluded that propranolol, in addition to blocking beta-receptors, produces other beta-receptor independent electrophysiologic effects in human beings

    Supernova Remnants as Clues to Their Progenitors

    Full text link
    Supernovae shape the interstellar medium, chemically enrich their host galaxies, and generate powerful interstellar shocks that drive future generations of star formation. The shock produced by a supernova event acts as a type of time machine, probing the mass loss history of the progenitor system back to ages of \sim 10 000 years before the explosion, whereas supernova remnants probe a much earlier stage of stellar evolution, interacting with material expelled during the progenitor's much earlier evolution. In this chapter we will review how observations of supernova remnants allow us to infer fundamental properties of the progenitor system. We will provide detailed examples of how bulk characteristics of a remnant, such as its chemical composition and dynamics, allow us to infer properties of the progenitor evolution. In the latter half of this chapter, we will show how this exercise may be extended from individual objects to SNR as classes of objects, and how there are clear bifurcations in the dynamics and spectral characteristics of core collapse and thermonuclear supernova remnants. We will finish the chapter by touching on recent advances in the modeling of massive stars, and the implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin (18 pages, 6 figures

    Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

    Get PDF
    Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not included in v1. Accepted for publication in Astronomy & Astrophysic

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    Get PDF
    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spectral time series down to 2000 Angstrom. Significant diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in uvw1/F250W are found to correlate with the B-band light-curve shape parameter dm15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag versus ~0.2 mag for those with 0.8 < dm15 < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.Comment: 17 pages, 13 figures, accepted by Ap

    Supernova remnants: the X-ray perspective

    Get PDF
    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2 column-layout. 78 pages, 42 figures. This replaced version has some minor language edits and several references have been correcte

    Dust in Supernovae and Supernova Remnants II: Processing and survival

    Get PDF
    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations
    corecore