52 research outputs found

    Ecological Role of Submarine Canyons and Need for Canyon Conservation: A Review

    Get PDF
    Submarine canyons are major geomorphic features of continental margins around the world. Several recent multidisciplinary projects focused on the study of canyons have considerably increased our understanding of their ecological role, the goods, and services they provide to human populations, and the impacts that human activities have on their overall ecological condition. Pressures from human activities include fishing, dumping of land-based mine tailings, and oil and gas extraction. Moreover, hydrodynamic processes of canyons enhance the down-canyon transport of litter. The effects of climate change may modify the intensity of currents. This potential hydrographic change is predicted to impact the structure and functioning of canyon communities as well as affect nutrient supply to the deep-ocean ecosystem. This review not only identifies the ecological status of canyons, and current and future issues for canyon conservation, but also highlights the need for a better understanding of anthropogenic impacts on canyon ecosystems and proposes other research required to inform management measures to protect canyon ecosystemsVersiĂłn del edito

    Mediterranean bioconstructions along the Italian coast

    Get PDF
    Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning

    Modeling species invasions using thermal and trophic niche dynamics under climate change

    Get PDF
    Changing marine temperatures modify the distributional ranges of natural populations, but the success of invasion of new areas depends on local physical and ecological conditions. We explore the invasion by thermophilic species and their ecosystem effects by simulating a sea surface temperature increase using a trophodynamic model for the northern Adriatic Sea (NAS), in which thermal and trophic niches are explicitly represented for each thermophilic non-indigenous species and native species. The NAS acts as a cul-de-sac for local species, preventing a further poleward migration as a response to temperature rise. In this situation, model results showed that effects of warming and invasion produced complex, non-linear changes on biomasses but never resulted in a complete overturn of a group of native species and/or a bloom of invasive ones. Despite this, the diversity index stabilizes at increased values after simulating invasion, possibly indicating that in such enclosed systems the establishment of invasive species could represent enrichment in ecosystem structure. In addition, the absence of complete species substitution clearly showed the contribution of resident species towards increasing the resilience, i.e. the capability of the system to cope with invasion without changing substantially. Contrasting scenarios highlighted that changes in ecosystem primary production and species adaptation had secondary effects in ecosystem structure, while results for scenarios with different exploitation levels indicated that fishing can destabilize community structure in these change contexts, e.g. reducing community resilience. The results confirmed the importance of an ecological niche approach to analyze possible effects of invasion and highlighted the complexity of dynamics linked to temperature-driven species invasion’, in terms of both the predicted strength of impacts and the direction of biomass change

    The 2016 status of marine protected areas in the Mediterranean

    No full text
    MedPAN and SPA/RAC are working alongside their partners (IUCN, WWF, local NGOs, research organization, etc.) to establish an ecological network of MPA to protect at least 10% of the marine and coastal waters which is representative of the Mediterranean’s diversity and made up of ecologically interconnected and well managed MPAs, in accordance with the latest guidelines from the Convention on Biological Diversity and the Barcelona Convention. Every 4 years, MedPAN and SPA/RAC carry out the status of Mediterranean MPA to evaluate the progress that has been made, since the first inventory done in 2008, on the Mediterranean system of MPAs in view of the above mentioned objectives: does the network cover 10% of the Mediterranean, is it representative of the Mediterranean diversity, are MPAs well-connected and well managed? The main findings of the 2012 status of Marine Protected Areas in the Mediterranean Sea were that the target of 10% protection was far from being achieved, that the network was not yet coherent and that MPA management was still insufficient. This 2016 report has used the 2015-2016 inventory made on MPAs (MAPAMED) and a survey questionnaire sent to managers not only to assess the progress made since 2012 but also to identify the remaining steps needed to achieve by 2020, the objectives set for the network of MPAs by the Convention on Biological Diversity and the Barcelona Convention.peer-reviewe
    • 

    corecore