629 research outputs found

    An aperiodic hexagonal tile

    Get PDF
    We show that a single prototile can fill space uniformly but not admit a periodic tiling. A two-dimensional, hexagonal prototile with markings that enforce local matching rules is proven to be aperiodic by two independent methods. The space--filling tiling that can be built from copies of the prototile has the structure of a union of honeycombs with lattice constants of 2na2^n a, where aa sets the scale of the most dense lattice and nn takes all positive integer values. There are two local isomorphism classes consistent with the matching rules and there is a nontrivial relation between these tilings and a previous construction by Penrose. Alternative forms of the prototile enforce the local matching rules by shape alone, one using a prototile that is not a connected region and the other using a three--dimensional prototile.Comment: 32 pages, 24 figures; submitted to Journal of Combinatorial Theory Series A. Version 2 is a major revision. Parts of Version 1 have been expanded and parts have been moved to a separate article (arXiv:1003.4279

    Discrete models of force chain networks

    Full text link
    A fundamental property of any material is its response to a localized stress applied at a boundary. For granular materials consisting of hard, cohesionless particles, not even the general form of the stress response is known. Directed force chain networks (DFCNs) provide a theoretical framework for addressing this issue, and analysis of simplified DFCN models reveal both rich mathematical structure and surprising properties. We review some basic elements of DFCN models and present a class of homogeneous solutions for cases in which force chains are restricted to lie on a discrete set of directions.Comment: 17 pages, 6 figures, dcds-B.cls; Minor corrections to version 2, but including an important factor of 2; Submitted to Discrete and Continuous Dynamical Systems B for special issue honoring David Schaeffe

    Controlling spatiotemporal dynamics with time-delay feedback

    Full text link
    We suggest a spatially local feedback mechanism for stabilizing periodic orbits in spatially extended systems. Our method, which is based on a comparison between present and past states of the system, does not require the external generation of an ideal reference state and can suppress both absolute and convective instabilities. As an example, we analyze the complex Ginzburg-Landau equation in one dimension, showing how the time-delay feedback enlarges the stability domain for travelling waves.Comment: 4 pages REVTeX + postscript file with 3 figure

    Philadelphia Public School Notebook: Re-envisioning the Urban Education Beat with an Eye on Impact

    Get PDF

    Forcing nonperiodicity with a single tile

    Full text link
    An aperiodic prototile is a shape for which infinitely many copies can be arranged to fill Euclidean space completely with no overlaps, but not in a periodic pattern. Tiling theorists refer to such a prototile as an "einstein" (a German pun on "one stone"). The possible existence of an einstein has been pondered ever since Berger's discovery of large set of prototiles that in combination can tile the plane only in a nonperiodic way. In this article we review and clarify some features of a prototile we recently introduced that is an einstein according to a reasonable definition. [This abstract does not appear in the published article.]Comment: 18 pages, 10 figures. This article has been substantially revised and accepted for publication in the Mathematical Intelligencer and is scheduled to appear in Vol 33. Citations to and quotations from this work should reference that publication. If you cite this work, please check that the published form contains precisely the material to which you intend to refe
    • …
    corecore