344 research outputs found

    Linking and causality in globally hyperbolic spacetimes

    Full text link
    The linking number lklk is defined if link components are zero homologous. Our affine linking invariant alkalk generalizes lklk to the case of linked submanifolds with arbitrary homology classes. We apply alkalk to the study of causality in Lorentz manifolds. Let MmM^m be a spacelike Cauchy surface in a globally hyperbolic spacetime (Xm+1,g)(X^{m+1}, g). The spherical cotangent bundle STMST^*M is identified with the space NN of all null geodesics in (X,g).(X,g). Hence the set of null geodesics passing through a point xXx\in X gives an embedded (m1)(m-1)-sphere SxS_x in N=STMN=ST^*M called the sky of x.x. Low observed that if the link (Sx,Sy)(S_x, S_y) is nontrivial, then x,yXx,y\in X are causally related. This motivated the problem (communicated by Penrose) on the Arnold's 1998 problem list to apply link theory to the study of causality. The spheres SxS_x are isotopic to fibers of (STM)2m1Mm.(ST^*M)^{2m-1}\to M^m. They are nonzero homologous and lk(Sx,Sy)lk(S_x,S_y) is undefined when MM is closed, while alk(Sx,Sy)alk(S_x, S_y) is well defined. Moreover, alk(Sx,Sy)Zalk(S_x, S_y)\in Z if MM is not an odd-dimensional rational homology sphere. We give a formula for the increment of \alk under passages through Arnold dangerous tangencies. If (X,g)(X,g) is such that alkalk takes values in Z\Z and gg is conformal to gg' having all the timelike sectional curvatures nonnegative, then x,yXx, y\in X are causally related if and only if alk(Sx,Sy)0alk(S_x,S_y)\neq 0. We show that x,yx,y in nonrefocussing (X,g)(X, g) are causally unrelated iff (Sx,Sy)(S_x, S_y) can be deformed to a pair of Sm1S^{m-1}-fibers of STMMST^*M\to M by an isotopy through skies. Low showed that if (\ss, g) is refocussing, then MM is compact. We show that the universal cover of MM is also compact.Comment: We added: Theorem 11.5 saying that a Cauchy surface in a refocussing space time has finite pi_1; changed Theorem 7.5 to be in terms of conformal classes of Lorentz metrics and did a few more changes. 45 pages, 3 figures. A part of the paper (several results of sections 4,5,6,9,10) is an extension and development of our work math.GT/0207219 in the context of Lorentzian geometry. The results of sections 7,8,11,12 and Appendix B are ne

    Minority carrier lifetime in silicon photovoltaics : the effect of oxygen precipitation

    Get PDF
    Single-crystal Czochralski silicon used for photovoltaics is typically supersaturated with interstitial oxygen at temperatures just below the melting point. Oxide precipitates therefore can form during ingot cooling and cell processing, and nucleation sites are typically vacancy-rich regions. Oxygen precipitation gives rise to recombination centres, which can reduce cell efficiencies by as much as 4% (absolute). We have studied the recombination behaviour in p-type and n-type monocrystalline silicon with a range of doping levels intentionally processed to contain oxide precipitates with a range of densities, sizes and morphologies. We analyse injection-dependent minority carrier lifetime measurements to give a full parameterisation of the recombination activity in terms of Shockley–Read–Hall statistics. We intentionally contaminate specimens with iron, and show recombination activity arises from iron segregated to oxide precipitates and surrounding defects. We find that phosphorus diffusion gettering reduces the recombination activity of the precipitates to some extent. We also find that bulk iron is preferentially gettered to the phosphorus diffused layer rather than to oxide precipitates

    Numerical Modeling of Evanescent-Wave Atom Optics

    Get PDF
    We numerically solve the time-dependent Schrodinger equation for a two-level atom interacting with an evanescent light field. The atom may be reflected or diffracted. Using the experimental parameter values we quantitatively model the evanescent field dopplerons (velocity-tuned resonances) observed by Stenlake et al. [Phys. Rev. A 49, 16 (1994)]. Besides successfully modeling the experiment, our approach provides complementary insights to the usual solution of the time-independent Schrodinger equation. We neglect spontaneous emission

    Interactions between proteins bound to biomembranes

    Full text link
    We study a physical model for the interaction between general inclusions bound to fluid membranes that possess finite tension, as well as the usual bending rigidity. We are motivated by an interest in proteins bound to cell membranes that apply forces to these membranes, due to either entropic or direct chemical interactions. We find an exact analytic solution for the repulsive interaction between two similar circularly symmetric inclusions. This repulsion extends over length scales of order tens of nanometers, and contrasts with the membrane-mediated contact attraction for similar inclusions on tensionless membranes. For non circularly symmetric inclusions we study the small, algebraically long-ranged, attractive contribution to the force that arises. We discuss the relevance of our results to biological phenomena, such as the budding of caveolae from cell membranes and the striations that are observed on their coats.Comment: 22 pages, 2 figure

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore