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Numerical modeling of evanescent-wave atom optics
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We numerically solve the time-dependent Schrodinger equation for a two-level atom interacting with an

evanescent light field. The atom may be reflected or diffracted. Using the experimental parameter values we
quantitatively model the evanescent field dopplerons (velocity-tuned resonances) observed by Stenlake et al.
[Phys. Rev. A 49, 16 (1994)].Besides successfully modeling the experiment, our approach provides comple-
mentary insights to the usual solution of the time-independent Schrodinger equation. We neglect spontaneous
emission.

PACS number(s): 42.50.Vk, 32.80.Pj, 03.75.Be

I. INTRODUCTION II. THE MODEL AND ITS NUMERICAL SOLUTION

Evanescent light fields have been used to reflect [1—8]
and diffract [9] beams of atoms. The theory of these pro-
cesses is well developed [10—13]. In this paper we quantita-
tively model the experimental observations of evanescent
field dopplerons by Stenlake et al. [8]. Quantitative agree-
ment is achieved without any free parameters.

We compute the dynamics of atomic wave functions un-

dergoing reAection and diffraction by evanescent light. This
approach allows the dynamics of the interaction to be studied
and hence provides complementary insights to those derived
from solutions of the time-independent Schrodinger equation
[12,13].

We have numerically solved the time-dependent Schro-
dinger equation for a two-level atom moving in the evanes-
cent field produced by total internal reAection of two laser
beams. Throughout the interaction the wave functions are
available in either the coordinate or momentum representa-
tions. Previous numerical work has computed atomic trans-
mission and reflection coefficients [14].The work closest in

spirit to ours is that of Janicke and Wilkens [15], who con-
sidered magneto-optical configurations. However, they did
not attempt quantitative comparisons with specific experi-
ments.

We have successfully modeled the experimental observa-
tions of dopplerons (velocity-tuned resonances) [16] in the
evanescent-wave reflection of sodium atoms by Stenlake
et al. [8]. In particular we have determined the central fre-
quencies and widths of the dopplerons, which are dependent
on the transition light shifts. Agreement with experiment is
found using parameters that are within the experimental un-

certainties. We are able to explain the difficulty of experi-
mentally observing higher order dopplerons by their rela-
tively small depth and width. Our model is also consistent
with the experiment in not showing diffraction for fast atom
beams. Nevertheless the important limitations of our model
are its neglect of spontaneous emission and of the spatial
profile of the laser beams.

H = p /2m+

facto,

o+o+A, g(a.~+ .o).E(t,r). .

The mass of the atom is rn, cr+ and o. are the raising and
lowering operators for the transition, kg is the dipole mo-
ment of the transition, t is time, and r is the position operator
for the atom's center of mass. We denote operators by carets.

The experiment we model reflected sodium atoms from a
grating made by two counterpropagating laser beams. The
evanescent electric field is modeled by

E(t, r) = exp( —qy) ((Ei exp[ —i( tot t Qx) ]+H.c.)—
+ (E2exp[ —i(to2t+ Qx)]+ H.c.)), (2)

where H.c. means the Hermitian conjugate of the preceding
terms. This form assumes that the fields are uniform in the x
direction and hence does not include the Gaussian spot shape

atom beam
v)k

We focus on the diffraction of an atom by the evanescent
light field associated with two laser beams totally internally
reflected from a glass-vacuum interface. The direction per-
pendicular to the glass is y and the direction parallel to the
glass x. The origin of the y coordinate is at the interface and
the positive direction is into the vacuum. We assume that the
atom is initially propagating towards the interface in the x-y
plane with a positive x component of velocity; see Fig. 1.

The atom has two levels, a ground level
~

—) and an ex-
cited level ~+), separated by energy @to, . The Hamiltonian
for the system comprises the kinetic energy of the atom with
center of mass momentum p, the internal energy of the atom,
and the electric dipole interaction between these levels and
the electric field E(t, r),
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FIG, 1. Geometry of the lasers and atomic beam in the evanes-
cent field reflection experiment.
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of the laser beams. Quantities associated with the beams co-
propagating and counterpropagating with respect to the at-
oms are denoted by subscripts 1 and 2, respectively. The field
amplitudes are F.; and the laboratory frame angular frequen-
cies are co; . The evanescent-wave wave number is

Q = nsin(0)k, where n = 1.46 is the refractive index of the
quartz block, 0= ~/4 rad is the angle of incidence of the
totally internally reflected laser beams, and k= 1.066' 10
m ' is their vacuum wave number [8]. The inverse evanes-

cent field decay length is q =kg[nsin(0)] —1. We have as-
sumed that the wave numbers of the two fields are suffi-
ciently close that they can be approximated by k=k&=k2.
This greatly reduces the computational problem because the
x component of the atomic momentum only changes by
~A. Q for each absorbed or emitted photon. We have also
made the rotating-wave approximation by ignoring energy
nonconserving terms in the dipole interaction. This approxi-
mation will have a negligible effect on time scales that are
much longer than the optical period.

With these approximations, and in the interaction picture
with the atomic dipole rotating at frequency
co=(co, + cuz)/2, the Hamiltonian becomes

0'=p /2m+6(e), —co)o+o +Sgexp( —qy)

xylo-+(Ei

exp[ —i (ddt Qx)]-

+Ezexp[i(b, dt —Qx)])+ H.c.f,

lx, y, t) = exp( —ifiko t/2m)

x g P„l —) lko, + nQ) exp( —i nAdt)
n, even

+ X @.l+)lko. +&Q)exp( —in~dr) . (4)
/1, OC1CI

We substitute this ansatz into the Schrodinger equation asso-
ciated with the Hamiltonian Eq. (3) to find the following
system of equations for the wave functions:

A 2

&+S. 0.+gexp( —qy)(E'A. +i

+Ez P„,), n even, (5a)

where we have introduced the laboratory frame detuning be-
tween the two fields, 6„=(cu, —cuz)/2.

We assume that the atoms are initially in their ground
level

l

—) and in an eigenstate lko ) of the x component of
their momentum with eigenvalue Ako . Then because the
photon momentum of the copropagating field is 6Q and that
of the counterpropagating field —A, Q, the x component of
the momentum of the atoms is restricted to the eigenvalues
A, (ko, +nQ), with n any integer. When the atom is in its
excited level l+), n is odd, and when the atom is in its
ground level

l

—), n is even. We calculate the wave functions

P„(y,t) occurring in the following ansatz for the atom's
quantum state lx, y, t):

&~~i/'n=
Py +5„+cu, —co P„+gexp( —qy)(Ei P„

+ E~ i/„+,),. n odd, (5b)

5,= (2ko nQ+n Q ) —nA„.

The bracketed terms in S, describe the Doppler shift and
recoil effects. The last term is associated with the energy
difference between the field and ground level atom energies.

Equations (5) are multicomponent Schrodinger equations
in time and one spatial dimension. The spatial dimension is

y, perpendicular to the glass, and the components correspond
to x momentum eigenstates, parallel to the glass. Equa-
tions (5) may be written in vector form,

i8,%=
A 2

2
'&+V(y) ~,

2m fl
(7)

where %=(. . . P i, go, g, , . . . ), and the matrix V(y) is
the discrete part of the Hamiltonian. Separation of the
Hamiltonian into kinetic and nonkinetic energy parts is the
basis of our numerical method, the "split operator" method,
described in detail in Refs. [18,19]. Briefiy, it approximates
the unitary evolution operator U, such that

N(r+ b, r) = UW(r)

by the following form that gives an error of order (b, t),

(8)

a~ I,' b, t pU= exp —i — exp( —ib, tV) exp —i—
2 2m6 2 2m fL

(9)

A computational advantage of the method is that the ki-
netic and nonkinetic energy parts of the evolution reduce to
multiplications of the wave functions in their momentum and
coordinate representations, respectively. The transformation
between representations is efficiently performed by the fast
Fourier transform.

One of the specific difficulties of modeling the interaction
of atoms with evanescent waves is the treatment of atoms
that are not reflected. Such atoms interact with the glass sur-
face and are adsorbed or scattered [17].This is a dissipative
interaction and hence cannot be modeled by a unitary Schro-
dinger equation. One solution is to introduce a fictitious
complex potential and hence solve a nonunitary Schrodinger
equation. However, care must be taken to avoid spurious
rejections from the complex potential. We model nonre-
Aected atoms by allowing them to propagate into the region

y (0. In our model atoms in this region obey the Schrodinger
equations (5), but their only physical significance is to rep-
resent nonreAected atoms. In this region the model has con-
stant electric fields, which are continuous with the evanes-
cent field at the glass-vacuum interface. The careful
treatment of nonrefiected atoms is important for the accurate
modeling of dopplerons, which we describe in the next sec-
tion.
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III. DOPPI.ERONS
0.07~

( ) t=0 ps

In this section we compare the results of our model with
the experimental observations of doppleron resonances by
Stenlake et al. [8] and find quantitative agreement. Evidence
for dopplerons in evanescent waves has also been reported
by Feron et al. [7].

In the experiment dopplerons occur when multiphoton
transitions from the ground level to the excited level come
into resonance as the copropagating laser frequency is
scanned. In the laboratory frame the resonance condition de-
pends on the longitudinal velocity of the atom v, , since this
determines the Doppler shifts v, g of the field frequencies.
The atom-field detunings in the laboratory frame are

0~
0

0~
0

&max 4

(b)

-3 n 4

5] = 0)] co~ A2= CO2 OJ~ .
&max 4 0 n 4

The analysis of dopplerons is particularly simple in the
"grating frame, " in which the grating formed by the inter-
ference of the counterpropagating lasers is stationary [8].
This frame moves through the laboratory frame with velocity

V =(41 A2)/(2Q).

In this frame the two lasers have the same frequency and
hence the same atomic detuning

5' = (6 i+ A2)/2. (12)

The Doppler shift of the fields in the grating frame due to the
atomic velocity is

bv =(v, —vg)Q. (13)

6'=nkvd n e odd integers.

In the strong fields necessary to reAect atoms the atomic
transition frequency is light shifted by an amount 51, so that
the doppleron resonance condition becomes

5' = nA~+ AL n e odd integers. (15)

Weak field multiphoton resonant absorption occurs when the
atomic detuning is an odd integer multiple of this Doppler
shift,

FIG. 2. Coordinate-space probability densities P =
i P„(y,t) i,

for y~0, for a Na atom undergoing partial refiection near an n = 3
doppleron. The quartz surface is at y=O and y =1.88 p, m. The
parameters are given in Table I and correspond to those of the
experiment of Stenlake et al [8], wi.th 6, =2mX2. 725 GHz. (a)
t=0, (b) t= 1 ps.

and variance Var(y), as given in Table I. Figure 2 was ob-
tained with a time step of At= 0.1 ns, a y grid of 4096
points with a lattice spacing of 0.92 nm, and using P„ for
ne( —7,—6, . . . , 6,7), although only n~( —4, . . . , 4) are
shown. Varying the time step and lattice spacing produced no
significant changes in the numerical results.

The outgoing wave function with n = 3 is formed from the
n=0 wave function after reliection has occurred. It corre-
sponds to diffraction at a low angle of about 1.6 mrad. This
was not observed in the experiment of Stenlake et al. [8]
because it represents an excited state with a lifetime of about
16 ns. The 0.5 p, s between the reAection of the atom and Fig.
2(b) therefore corresponds to about 30 lifetimes. Hence the

TABLE I. Parameters used to obtain the figures. For Figs. 2 and
3 the velocity and detuning differ slightly from the values given in
Ref. [8], since they were adjusted within the experimental uncer-
tainty to improve the fit.

The light shift AL will vary during the interaction as the
evanescent field strength varies with distance from the inter-
face. Hence we expect not only a shift but also a broadening
of the doppleron resonance. The sign of the light shift de-
pends on the detuning of the light field. For positive detun-
ings, as in our case, the transition frequency is reduced, so
AL(0.

An example of a numerical solution of the Schrodinger
equations (5) for the conditions of the experiment of Sten-
lake et al. [8] is shown in Fig. 2. It shows the probability
densities

i P„(y, t)i before and after partial reflection of Na
atoms near an n =+3 doppleron. The fraction of atoms re-
jected is approximately 40%. Only the physical region
y~0 is shown. For this and subsequent figures the initial
wave function is an n =0 Gaussian with mean position (y)

Parameter

Atom

Atomic velocity

Angle of incidence

(y)~=o
Var(y), 0

0
q

Figs. 2,3

Na

920
2.5
1.3
75

See captions
2mx 710

1.46
1.066x 10'
1.10x 10'
2.72x 10'

10
7.3

Fig. 4

Ne*

20
50
1.1
88

2~x 68.4
2~x 68.4

1.56
9.82x 10'
1.08x 10'
4.57x 10'

0.91
0.39

Units

ms '

p.m
nm

MHz

MHz

m '

m '

m '

GHz
GHz
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TABLE II. Comparison of experimental and theoretical dopple-
ron data. The frequency shift is that from the expected weak field
resonance, Eq. (14). The data are frequencies in units of 2ir GHz.

J3
C
0
O.

0 0.5—
V
Q

Y)
CC

n=+5 n=-5

Parameter

Central frequency 5",

Frequency shift

Width at half maximum

Central frequency 6",

Frequency shift

Width at half maximum

Doppleron

ll = + 3

El = + 3
fl=+3

El= 3
n= 3
n= 3

Experiment

0.95
-0.18
0.24

4.95
0.38)0.25

Model

1.02
-0.11

0.15

4.94
0.37
0.23

n=-3

i i I

1 2 3
Atom frame laser 1 detuning (6Hz)

FIG. 3. ReAection probability versus atom frame detuning of the

copropagating laser, 5'&'/2m. , Eq. (16). This figure should be com-
pared to Fig. 2 of Stenlake et al. [8]. The parameters are given in

Table I. In particular, 6, = 5", + 2~& 1.61 GHz. With a dipole mo-
ment of kg=2X10 cm the intensities of lasers 1 and 2 are,
respectively, about 400 W cm and half that. The reAection dips
are labeled by the doppleron causing them.

n = 3 peak in Fig. 2(c) is an unphysical artifact of our model
due to neglect of spontaneous emission.

Dopplerons corresponding to three-photon resonance,
n = ~ 3, were observed in the experiments of Stenlake et al.
[8] by scanning the copropagating laser frequency cot. The
minimum reAectivity of the n=3 doppleron occurred for a
laser detuning below the weak field value given by Eq. (14),
consistent with AL~O. The n = 3 doppleron corresponds to
the absorption of two copropagating (cot) photons and
stimulated emission of one counterpropagating (coz) photon;
see Fig. 3 inset. Hence the shift in co& for resonance will be
half the light shift AL . The n = —3 doppleron occurred at a
laser detuning above the value given by Eq. (14). It corre-
sponds to the absorption of two ~2 photons and stimulated
emission of one w& photon; see Fig. 3 inset. Since one cu&

photon is emitted, the expected shift of the n = —3 doppleron
for resonance is the negative of the total light shift AL.

Figure 3 shows the reflection probabilities obtained from
our numerical model with the parameters of Table I. These
parameters are within the experimental uncertainties of those
reported by Stenlake et al. [8]. Hence Fig. 3 was obtained
without adjustable parameters. It is the central result of this
paper and should be compared to the experimental results
presented in Fig. 2 of Stenlake et al. [8].The reflection prob-
abilities are plotted against the detuning 6'&' in the atom
frame,

5",=5, —
U Q.

ReAection occurs when the detuning in the atom frame is
positive. The n = ~ 3 dopplerons have nearly the frequencies
found experimentally. The quantitative comparison of our
results with the experiment is summarized in Table II. The
n = + 3 doppleron is within 2 ~X 70 MHz of the experimen-

tal value. Most of this discrepancy can be accounted for by
the difficulty in determining the central frequency of the ex-
perimental doppleron, Fig. 2 of [8], which is quite asymmet-
ric. The calculated frequency of the n= —3 doppleron is
well within the experimental error. The experimental width
of the n = + 3 doppleron is about 50% greater than the mod-
eled value. This additional broadening is not unreasonable
given the various nonideal aspects of the experiment, which
are discussed at the end of this section. The experimental
width of the n = —3 doppleron could not be determined with

any accuracy but is certainly wider than the n = + 3 dopple-
ron, as required by our results.

Figure 3 also shows n= ~5 dopplerons, which were not
observed in the experiment. They were presumably lost in
the noise since they are shallower and narrower than the
n = ~3 dopplerons. This can be understood as being due to
the closer avoided crossings of the quasipotentials, and hence
greater nonadiabatic transition rates, that occur for the
n = ~5 case. Murphy et al. [13]reported fine scale structure
of dopplerons due to resonances with quasibound states in
the asymptotically forbidden quasipotential [12]. We have
not attempted to resolve this structure, nor was it observed in
the experiment. We did not attempt to find higher order
dopplerons.

Both the experimental and numerical results show the
n = —3 doppleron further shifted from the weak field reso-
nance frequency than the n = + 3 doppleron. An exact factor
of 2 difference in the shifts is not seen due to the variation in
the light shift with position, as previously discussed. This
variation also contributes to the broadening of the doppleron
resonances beyond that due to the natural atomic linewidth
of 2nX10 MHz.

The overall agreement is good considering the complexi-
ties and uncertainties of the experiment, and the idealizations
of the numerical model. In particular the atoms are reflected
from multiple Gaussian spots rather than the uniform fields
that are assumed in the model. One effect of the nonuniform
field distribution within the Gaussian spots is to reduce the
effective refiection area as the detuning is increased [20].
The resulting decrease of the reflected atom signal with in-
creasing detuning is apparent in Fig. 2 of Stenlake et al. [8].

The difference between the zero reflection predicted by
the model at the n = ~ 3 dopplerons and the partial reflection
observed in the experiment [8] is likely to be partly due to
spontaneous emission. This regenerates ground level atoms,
which may then be reflected instead of lost. Other factors
expected to inhuence the agreement between the experiment
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(a) Coordinate space probability densities

0~
0

ymax -4 -3 n 4

(b) Momentum space probability densities

0~
0

pmax 4 -3 0 3 n 4

FIG. 4. Probability densities for a Ne atom undergoing diffrac-
tion. The time is t=2.6 p, s after the initial conditions given in
Table I. (a) Coordinate-space probability densities P=~P„(y)i for
y~O. The surface is at y=O and y „=3.74 p, m. (b) Momentum-

space probability densities M= if„(p )i . p =170A,k. The pa-
rameters, given in Table I, are similar to those of Fig. 7 of Ref. [12],
with an atomic beam angle of incidence of 50 mrad.

and the model include the angular divergence (~ 0.5 mrad)
and velocity spread (~5 ms ') of the atomic beam, and
possible incomplete overlap between the laser spots.

IV. DISCUSSION

Diffraction from evanescent-wave gratings has been pre-
dicted [11]and observed [9] with slowed atoms. In contrast
our model does not predict diffraction of ground-state atoms
in any parameter regime we have investigated for the fast
atoms used by Stenlake et al. [8].Indeed, diffraction was not
observed in that experiment, despite the ability to adjust the
relative velocity of the grating and atoms.

Murphy et al. [13]have also modeled the experiment of
Stenlake et al. [8]. However, they considered only the ret-
roreAected laser case, 6

&

= A2 and E& =E2, and hence were
not able to make quantitative comparisons with the experi-
ment.

Our model shows diffraction of ground-state atoms for
slowed neon beams, as predicted by Deutschmann et al.
[12]; see Fig. 4. Figure 4(a) shows the coordinate-space

probability densities in the physical region y) 0. Figure 4(b)
shows the momentum-space probability densities for p~)0.
A comparison of the wave functions in Figs. 4(a) and 4(b)
indicates that the wave packets in Fig. 4(a) have a positive y
velocity and hence are moving away from the interface. The
mean momentum (p~) of the n= —2 wave function is
greater than that of the n=0 wave function. Hence it corre-
sponds to high angle diffraction. The total outgoing probabil-
ity is about 25Vo, with that in the n, = —2 wave function
about 6'. The wave functions with n= 1 and ri =3 corre-
spond to excited atomic states and hence would not be ob-
served experimentally due to spontaneous emission, as pre-
viously discussed.

Figure 4 was obtained with a time step of At = 0.1 ns, a
y grid of 4096 points with a lattice spacing of 1.83 nm, and
using P„ for n e ( —11, . . . , 11), although only n
e ( —4, . . . ,4) are shown. The result is consistent with the
predictions of Deutschmann et al. [12] based on the quasi-
potential method.

Christ et al. [9] observed diffraction with slow metastable
neon. We have modeled the conditions of that experiment
(not shown) and found no significant atomic diffraction. This
suggests that the physics of the diffraction that is seen in this
experiment is not encompassed by the two-level model. This
is perhaps not surprising since multiple levels enrich the
physics and provide new diffraction channels [21].The dif-
ferent coupling strengths of the transitions to the light pro-
duce different light shifts and hence an increased range of
kinetic energies that the atoms may gain from the Geld.

Our model could be improved by including the multistate
hyperfine structure of real atoms. Spontaneous emission
could also be included using a stochastic wave-function
method [22,23]. However, such improvements would sub-
stantially increase the computational time. Including the
Gaussian laser spot shape is also possible but probably not
practical with our type of model. In summary, we have
shown that a numerical solution of the two-level Schrodinger
equation, without adjustable parameters, agrees quantita-
tively with the experimental observations of dopplerons in
evanescent light fields by Stenlake et al. [8].
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