51 research outputs found

    The PEARL score predicts 90-day readmission or death after hospitalisation for acute exacerbation of COPD.

    Get PDF
    BACKGROUND: One in three patients hospitalised due to acute exacerbation of COPD (AECOPD) is readmitted within 90 days. No tool has been developed specifically in this population to predict readmission or death. Clinicians are unable to identify patients at particular risk, yet resources to prevent readmission are allocated based on clinical judgement. METHODS: In participating hospitals, consecutive admissions of patients with AECOPD were identified by screening wards and reviewing coding records. A tool to predict 90-day readmission or death without readmission was developed in two hospitals (the derivation cohort) and validated in: (a) the same hospitals at a later timeframe (internal validation cohort) and (b) four further UK hospitals (external validation cohort). Performance was compared with ADO, BODEX, CODEX, DOSE and LACE scores. RESULTS: Of 2417 patients, 936 were readmitted or died within 90 days of discharge. The five independent variables in the final model were: Previous admissions, eMRCD score, Age, Right-sided heart failure and Left-sided heart failure (PEARL). The PEARL score was consistently discriminative and accurate with a c-statistic of 0.73, 0.68 and 0.70 in the derivation, internal validation and external validation cohorts. Higher PEARL scores were associated with a shorter time to readmission. CONCLUSIONS: The PEARL score is a simple tool that can effectively stratify patients' risk of 90-day readmission or death, which could help guide readmission avoidance strategies within the clinical and research setting. It is superior to other scores that have been used in this population. TRIAL REGISTRATION NUMBER: UKCRN ID 14214

    A genome-wide association study in Hispanics/Latinos identifies novel signals for lung function: the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Rationale:: Lung function and chronic obstructive pulmonary disease (COPD) are heritable traits. Genome-wide association studies (GWAS) have identified numerous pulmonary function and COPD loci, primarily in cohorts of European ancestry. Objectives: Perform a GWAS of COPD-phenotypes in Hispanic/Latino populations to identify loci not previously detected in European populations. Methods: :GWAS of lung function and COPD in Hispanic/Latino participants from a population-based cohort. We performed replication studies of novel loci in independent studies. Measurements and Main Results: Among 11,822 Hispanic/Latino participants, we identified eight novel signals; three replicated in independent populations of European Ancestry. A novel locus for forced expiratory volume in one second (FEV1) in ZSWIM7 (rs4791658; p=4.99×10-9) replicated. A rare variant (MAF=0.002) in HAL (rs145174011) was associated with FEV1 to forced vital capacity (FEV1/FVC) (p=9.59×10-9) in a region previously identified for COPD-related phenotypes; it remained significant in conditional analyses but did not replicate. Admixture mapping identified a novel region, with a variant in AGMO (rs41331850), associated with Amerindian ancestry and FEV1, which replicated. A novel locus for FEV1 identified among ever smokers (rs291231; p=1.92×10-8) approached statistical significance for replication in admixed populations of African ancestry and a novel SNP for COPD in PDZD2 (rs7709630; p=1.56×10-8) regionally replicated. Additionally, loci previously identified for lung function in European samples were associated in Hispanic/Latino participants in HCHS/SOL at the genome-wide significance level. Conclusions: We identified novel signals for lung function and COPD in a Hispanic/Latino cohort. Including admixed populations when performing genetic studies may identify variants contributing togenetic etiologies of COPD

    Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction

    Get PDF
    RATIONALE: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.OBJECTIVES: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.METHODS: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations.MEASUREMENTS AND MAIN RESULTS: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.CONCLUSIONS: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.</p

    Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study

    Get PDF
    Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease

    Association of Forced Vital Capacity with the Developmental Gene <i>NCOR2</i>

    Get PDF
    Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 chi

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
    corecore