10 research outputs found

    Unitary Standard Model from Spontaneous Dimensional Reduction and Weak Boson Scattering at the LHC

    Full text link
    Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by a number of quantum gravity approaches which all indicate that the spacetime dimensions get reduced at high energies. In this work, we formulate an effective theory of electroweak interactions based upon the standard model, incorporating the spontaneous reduction of space-dimensions at TeV scale. The electroweak gauge symmetry is nonlinearly realized with or without a Higgs boson. We demonstrate that the SDR ensures good high energy behavior and predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV, the TeV-scale SDR gives a natural solution to the hierarchy problem. Such a light Higgs boson can have induced anomalous gauge couplings from the TeV-scale SDR. We find that the corresponding WW scattering cross sections become unitary at TeV scale, but exhibit different behaviors from that of the 4d standard model. These can be discriminated by the WW scattering experiments at the LHC.Comment: 38pp, Eur.Phys.J.(in Press); extended discussions for testing non-SM Higgs boson(125GeV) via WW scattering; minor clarifications added; references added; a concise companion is given in the short PLB letter arXiv:1301.457

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at s=8 TeV with the ATLAS detector

    Get PDF
    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb-1 of pp collision data at s=8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the ℓνℓ'ℓ' (ℓ=μ, e), ℓℓqq-, ℓνqq- and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the ℓℓqq-, ℓνqq-, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension

    A Study of heavy flavor production using muons in hadronic Z0 decays

    Get PDF
    Contains fulltext : 125113.pdf (preprint version ) (Open Access

    Measurement of the top quark mass in all-jet events

    Get PDF
    We describe a measurement of the mass of the top quark from the purely hadronic decay modes of pairs using all-jet data produced in collisions at at the Fermilab Tevatron Collider. The data, which correspond to an integrated luminosity of 110.2±5.8 pb?1, were collected with the DØ detector from 1992 to 1996. We find a top quark mass of 178.5±13.7(stat)±7.7(syst) GeV/c2.<br/

    Top quark physics at hadron colliders

    No full text
    The top quark, discovered at the FERMILAB TEVATRON collider in 1995, is the heaviest known elementary particle. Today, ten years later, still relatively little is known about its properties. The strong and weak interactions of the top quark are not nearly as well studied as those of the other quarks and leptons. The strong interaction is most directly measured in top quark pair production. The weak interaction is measured in top quark decay and single top quark production, which remains thus far unobserved. The large top-quark mass of about 175 GeV/c2 suggests that it may play a special role in nature. It behaves differently from all other quarks due to its large mass and its correspondingly short lifetime. The top quark decays before it hadronises, passing its spin information on to its decay products. Therefore, it is possible to measure observables that depend on the top quark spin, providing a unique environment for tests of the Standard Model and for searches for physics beyond the Standard Model. This report summarises the latest measurements and studies of top quark properties and rare decays from the TEVATRON in Run II. With more than 1 fb-1 of luminosity delivered to each experiment, CDF and DO, top quark physics at the TEVATRON is at a turning point from first studies to precision measurements with sensitivity to new physics. An outlook onto top quark physics at the Large Hadron Collider (LHC) at CERN, planned to begin operation in the year 2007, is also given

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at s=8 TeV with the ATLAS detector

    Get PDF
    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ   final states in multiple decay channels using 20.3 fb−1 of pp   collision data at . In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ   in the ℓνℓ′ℓ′ (ℓ=μ,e), , and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ   bosons are compared with predictions of an extended gauge model with a heavy W′ boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ   in the , , and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall–Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension
    corecore