8 research outputs found

    The Strange Parton Distribution of the Nucleon: Global Analysis and Applications

    Get PDF
    The strangeness degrees of freedom in the parton structure of the nucleon are explored in the global analysis framework, using the new CTEQ6.5 implementation of the general mass perturbative QCD formalism of Collins. We systematically determine the constraining power of available hard scattering experimental data on the magnitude and shape of the strange quark and anti-quark parton distributions. We find that current data favor a distinct shape of the strange sea compared to the isoscalar non-strange sea. A new reference parton distribution set, CTEQ6.5S0, and representative sets spanning the allowed ranges of magnitude and shape of the strange distributions, are presented. Some applications to physical processes of current interest in hadron collider phenomenology are discussed.Comment: 19 pages; revised version submitted to JHE

    Inelastic Black Hole Production and Large Extra Dimensions

    Full text link
    Black hole production in elementary particle collisions is among the most promising probes of large extra spacetime dimensions. Studies of black holes at particle colliders have assumed that all of the incoming energy is captured in the resulting black hole. We incorporate the inelasticity inherent in such processes and determine the prospects for discovering black holes in colliders and cosmic ray experiments, employing a dynamical model of Hawking evolution. At the Large Hadron Collider, inelasticity reduces rates by factors of 10^3 to 10^6 in the accessible parameter space, moderating, but not eliminating, hopes for black hole discovery. At the Pierre Auger Observatory, rates are suppressed by a factor of 10. We evaluate the impact of cosmic ray observations on collider prospects.Comment: References adde

    The Underlying Event and the Total Cross Section from Tevatron to the LHC

    Get PDF
    Multiple partonic interactions are widely used to simulate the hadronic final state in high energy hadronic collisions, and successfully describe many features of the data. It is important to make maximum use of the available physical constraints on such models, particularly given the large extrapolation from current high energy data to LHC energies. In eikonal models, the rate of multiparton interactions is coupled to the energy dependence of the total cross section. Using a Monte Carlo implementation of such a model, we study the connection between the total cross section, the jet cross section, and the underlying event. By imposing internal consistency on the model, we derive constraints on its parameters at the LHC. By imposing internal consistency on the model and comparing to current data we constrain the allowed range of its parameters. We show that measurements of the total proton-proton cross-section at the LHC are likely to break this internal consistency, and thus to require an extension of the model. Likely such extensions are that hard scatters probe a denser matter distribution inside the proton in impact parameter space than soft scatters, a conclusion also supported by Tevatron data on double-parton scattering, and/or that the basic parameters of the model are energy dependent.Comment: 17 pages, 6 figures, version accepted by JHE

    Updated Limits on TeV-Scale Gravity from Absence of Neutrino Cosmic Ray Showers Mediated by Black Holes

    Full text link
    We revise existing limits on the D-dimensional Planck scale M_D from the nonobservation of microscopic black holes produced by high energy cosmic neutrinos in scenarios with D=4+n large extra dimensions. Previous studies have neglected the energy radiated in gravitational waves by the multipole moments of the incoming shock waves. We include the effects of energy loss, as well as form factors for black hole production and recent null results from cosmic ray detectors. For n>4, we obtain M_D > 1.0 - 1.4 TeV. These bounds are among the most stringent and conservative to date.Comment: 11 pages, 4 figure

    Measurement of the W-boson mass in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→μν channel and 5.9×106 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370±7 (stat.)±11(exp. syst.) ±14(mod. syst.) MeV =80370±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W−bosons yields mW+−mW−=−29±28 MeV

    Diffraction Scattering Of Composite Particles.

    Full text link
    PhDNuclear physicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/185279/2/6813381.pd
    corecore