49 research outputs found

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    Get PDF
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Search for Resonant Production of High-Mass Photon Pairs in Proton-Proton Collisions at root s=8 and 13 TeV

    Get PDF
    Peer reviewe

    Search for pair-produced vectorlike B quarks in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    P-Type Silicon Strip Sensors for the new CMS Tracker at HL-L-HC

    Get PDF
    Abstract: The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type

    Search for supersymmetry with photons in pp collisions at √s=8TeV

    Get PDF
    Two searches for physics beyond the standard model in events containing photons are presented. The data sample used corresponds to an integrated luminosity of 19.7  fb−1 of proton-proton collisions at √s=8  TeV, collected with the CMS experiment at the CERN LHC. The analyses pursue different inclusive search strategies. One analysis requires at least one photon, at least two jets, and a large amount of transverse momentum imbalance, while the other selects events with at least two photons and at least one jet, and uses the razor variables to search for signal events. The background expected from standard model processes is evaluated mainly from data. The results are interpreted in the context of general gauge-mediated supersymmetry, with the next-to-lightest supersymmetric particle either a bino- or wino-like neutralino, and within simplified model scenarios. Upper limits at the 95% confidence level are obtained for cross sections as functions of the masses of the intermediate supersymmetric particles

    Influence of copper nutrition on alfalfa cell wall differentiation through a proteomic approach

    No full text
    Plant cells are surrounded by a rigid frame, the so-called cell wall, which restricts cell expansion. The cell wall is a dynamic structure that provides the structural strength needed to allow upright growth of the plant and confers resistance to pathogens. In this thesis, the first objective is to disentangle the dynamism of the plant cell wall by a core proteomics study. This approach, which combines both gel-based and gel-free methods, is supported by a panel of molecular techniques among which fibre characterization, mineral analysis and targeted gene expression profiling. Since cell wall development and remodelling relies on cellular and extracellular processes, the classical total proteome analysis is complemented by a focused study of the cell wall proteome. These studies indicate that the stem cell wall has an active and highly adaptive metabolism which constantly evolves and recycles during development. Each stage of maturity has a unique cellular and extracellular protein profile. As second objective, we identify, using the same techniques, the effects of fertilisation with micronutrients on alfalfa stem development to assess if microelement application, especially copper, drives significant changes in the plant stem metabolism. Our results support the fact that copper application elicits general pathways of plant resistance and may prolong the juvenile status of the stem. However, a combined application of copper and zinc is detrimental for plant growth. Altogether this thesis provides an integrated overview of the molecular mechanisms occurring at the cellular and the extracellular level, and which are modulated with maturity and mineral availability.(AGRO - Sciences agronomiques et ingénierie biologique) -- UCL, 201

    Etude du saule et de l’aulne pour la phytoremédiation des berges de cours d’eau non navigables

    Full text link
    peer reviewedBien que les techniques végétales soient d'application de longue date pour fixer les berges de cours d'eau, elles font maintenant partie d'une réflexion plus générale avec la prise en compte des besoins écologiques des écosystèmes de rivières et le développement de l'ingénierie végétale qui régit la mise en oeuvre des renaturations. Les travaux décrits dans cet ouvrage apportent les outils permettant la traçabilité et l'évaluation comportementale d'écotypes ligneux vis-à-vis de risques sanitaires connus (principalement la maladie de l'aulne) ou de pollutions attendues (diffusion de métaux lourds) tout en préservant leur capacité d'adaptation naturelle. Par l'établissement de collections d'aulnes, de saules ou de frênes autochtones et une multiplication végétative respectueuse de la diversité locale, les ressources génétiques de toute une région transfrontalière sont rendues disponibles pour tout programme de renaturation de berges de cours d'eau ou de zones écologiquement équivalentes à réhabiliter dans les bassins de la Meuse, du Rhin et de l'Escaut. Cet ouvrage s'adresse aux gestionnaires de cours d'eau, aux éco-conseillers du monde rural ou urbain, aux étudiants en sciences du vivant, ainsi qu'à toute personne s'intéressant à l'écosystème « rivière » et à la qualité de l'eau. Les stratégies éveloppées peuvent trouver application en d'autres lieux ou avec d'autres essences.Ecolirime

    Copper trafficking in plants and its implication on cell wall dnamics

    No full text
    In plants, copper (Cu) acts as essential cofactor of numerous proteins. While the definitive number of these so-called cuproproteins is unknown, they perform central functions in plant cells. As micronutrient, a minimal amount of Cu is needed to ensure cellular functions. However, Cu excess may exert in contrast detrimental effects on plant primary production and even survival. Therefore it is essential for a plant to have a strictly controlled Cu homeostasis, an equilibrium that is both tissue and developmentally influenced. In the current review an overview is presented on the different stages of Cu transport from the soil into the plant and throughout the different plant tissues. Special emphasis is on the Cu-dependent responses mediated by the SPL7 transcription factor, and the crosstalk between this transcriptional regulation and microRNA-mediated suppression of translation of seemingly non-essential cuproproteins. Since Cu is an essential player in electron transport, we also review the recent insights into the molecular mechanisms controlling chloroplastic and mitochondrial Cu transport and homeostasis. We finally highlight the involvement of numerous Cu-proteins and Cu-dependent activities in the properties of one of the major Cu-accumulation sites in plants: the cell wall
    corecore