244 research outputs found

    Evolution, biosynthesis and protective roles of oligogalactolipids: Key molecules for terrestrial photosynthesis?

    Get PDF
    14 p.Galactolipids (GLs) are the main lipids in chloroplast membranes and by default are also the most abundant polar lipids on earth. GLs with one or two galactose residues, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are ubiquitous and essential for photosynthesis. GLs with a headgroup formed by three to five galactoses, the so-called oligogalactolipids (OGLs), are only detected in some taxa, organs and environmental conditions. OGLs can be synthesized by two metabolic pathways: successive galactosylation by DGDG synthase (DGD) or transgalactosylation from MGDG by the GL:GL galactosyltransferase (GGGT/SFR2). While the first route appeared early in the evolution (cyanobacteria), the second evolved associated to the process of terrestrialization in the streptophytes. Both routes also differ on the anomeric type of glycosidic linkages formed: ?-type in DGD and ?-type in GGGT/SFR2. Despite functional differences between both configurations, the anomeric analysis of OGLs allows tracking their biosynthetic origin. While ?-OGLs are constitutive and present in some algae and non-vegetative organs of vascular plants, ?-OGLs are typically stressinducible in photosynthetic tissues. Land colonization by plants involved new challenges, such as the risk of dehydration, which required developing biochemical and physiological strategies to stabilize chloroplast membranes and safeguard their functioning. Based on the integrated assessment of data available we propose that the appearance of OGLs was one of those adaptations that simultaneously could have provided advantages against other environmental constraints such as freezingUniversidad del País Vasco ; Ministerio de Economía y Competitividad ; FEDER ; Universidad de Alcal

    Modelling the dynamics of the students academic performance in the German region of North Rhine- Westphalia: an epidemiological approach with uncertainty

    Full text link
    This is an author's accepted manuscript of an article published in "International Journal of Computer Mathematics"; Volume 91, Issue 2, 2014; copyright Taylor & Francis; available online at: http://dx.doi.org/10.1080/00207160.2013.813937Student academic underachievement is a concern of paramount importance in Europe, where around 15% of the students in the last high school courses do not achieve the minimum knowledge academic requirement. In this paper, we propose a model based on a system of differential equations to study the dynamics of the students academic performance in the German region of North Rhine-Westphalia. This approach is supported by the idea that both, good and bad study habits, are a mixture of personal decisions and influence of classmates. This model allows us to forecast the student academic performance by means of confidence intervals over the next few years.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness grant MTM2009-08587 and Universitat Politecnica de Valencia grant PAID06-11-2070.Cortés, J.; Ehrhardt, M.; Sánchez Sánchez, A.; Santonja, F.; Villanueva Micó, RJ. (2014). Modelling the dynamics of the students academic performance in the German region of North Rhine- Westphalia: an epidemiological approach with uncertainty. International Journal of Computer Mathematics. 91(2):241-251. https://doi.org/10.1080/00207160.2013.813937S241251912Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243-247. doi:10.1007/bf02532251Brockwell, P. J., & Davis, R. A. (1996). Introduction to Time Series and Forecasting. Springer Texts in Statistics. doi:10.1007/978-1-4757-2526-1Dogan, G. (2007). Bootstrapping for confidence interval estimation and hypothesis testing for parameters of system dynamics models. System Dynamics Review, 23(4), 415-436. doi:10.1002/sdr.362Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1), 1-26. doi:10.1214/aos/1176344552LJUNG, G. M., & BOX, G. E. P. (1979). The likelihood function of stationary autoregressive-moving average models. Biometrika, 66(2), 265-270. doi:10.1093/biomet/66.2.265Martcheva, M., & Castillo-Chavez, C. (2003). Diseases with chronic stage in a population with varying size. Mathematical Biosciences, 182(1), 1-25. doi:10.1016/s0025-5564(02)00184-0J.D. Murray,Mathematical Biology, Springer, New York, 2002.Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308Yazici, B., & Yolacan, S. (2007). A comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77(2), 175-183. doi:10.1080/10629360600678310M.Á.M. Zabal, P.F. Berrocal, C. Coll, and M. de los Ángeles Melero Zabal,La Interacción Social en Contextos Educativos[Social interaction in educational contexts], Psicología/Siglo XXI de España Editores Series, Siglo XXI de España, 1995

    Linezolid-induced lactic acidosis in two liver transplant patients with the mitochondrial DNA A2706G polymorphism

    Get PDF
    Mitochondrial toxicity has been recently suggested to be the underlying mechanism of long-term linezolid-associated toxicity in patients with 16S rRNA genetic polymorphisms. Here, we report for the first time two cases of lactic acidosis due to long-term linezolid exposure in liver transplant recipients who presented an A2706G mitochondrial DNA polymorphism

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore