13 research outputs found

    U.S. Public Dairy Cattle Welfare Perceptions and Attitudes: Survey Summary

    Get PDF
    The U.S. dairy industry is facing pressure to assure and verify dairy cattle welfare related practices in response to societal concerns. This research aims to determine U.S. public’s attitudes and perceptions about dairy cattle welfare

    Data from: Y-chromosome evidence supports asymmetric dog introgression into eastern coyotes

    Get PDF
    Hybridization has played an important role in the evolutionary history of Canis species in eastern North America. Genetic evidence of coyote–dog hybridization based on mitochondrial DNA (mtDNA) is lacking compared to that based on autosomal markers. This discordance suggests dog introgression into coyotes has potentially been male biased, but this hypothesis has not been formally tested. Therefore, we investigated biparentally, maternally, and paternally inherited genetic markers in a sample of coyotes and dogs from southeastern Ontario to assess potential asymmetric dog introgression into coyotes. Analysis of autosomal microsatellite genotypes revealed minimal historical and contemporary admixture between coyotes and dogs. We observed only mutually exclusive mtDNA haplotypes in coyotes and dogs, but we observed Y-chromosome haplotypes (Y-haplotypes) in both historical and contemporary coyotes that were also common in dogs. Species-specific Zfy intron sequences of Y-haplotypes shared between coyotes and dogs confirmed their homology and indicated a putative origin from dogs. We compared Y-haplotypes observed in coyotes, wolves, and dogs profiled in multiple studies, and observed that the Y-haplotypes shared between coyotes and dogs were either absent or rare in North American wolves, present in eastern coyotes, but absent in western coyotes. We suggest the eastern coyote has experienced asymmetric genetic introgression from dogs, resulting from predominantly historical hybridization with male dogs and subsequent backcrossing of hybrid offspring with coyotes. We discuss the temporal and spatial dynamics of coyote–dog hybridization and the conditions that may have facilitated the introgression of dog Y-chromosomes into coyotes. Our findings clarify the evolutionary history of the eastern coyote

    Performance of a second-order moments advection scheme in an Ocean General Circulation Model

    No full text
    The reliability of Ocean General Circulation Models (OGCMs) strongly depends on the quality of their tracer advection schemes. For the sake of simplicity and computing time, tracer advection schemes most commonly used in large-scale OGCMs tend to be low-order schemes, which suffer from spurious numerical diffusion and dispersion that result in distorted solutions. The application of high-order schemes would reduce numerical errors, but at a considerable cost in terms of computing time. An alternative to the use of high-order methods is the implementation of algorithms that take into account the sub-grid distribution of tracers. One such method is the Second-Order Moments (SOM) scheme of Prather (1986), which is more accurate than a fourth-order scheme, but at the time consumption of a second-order algorithm. This article presents results from coarse-resolution, global-ocean simulations with very low explicit diapycnal mixing, in which active and passive tracers were advected with the SOM method. We compare the performance of the method with that of more traditional schemes, namely, the FCT (flux corrected transport) and QUICKer (quadratic upstream interpolation for convective kinematics) schemes. In general, the use of the SOM method significantly improves tracer distributions and transports compared to FCT and QUICKer, thus leading to a better representation of ocean currents, notably boundary currents and frontal systems. While model simulations employing the FCT and QUICKer schemes recreate a global overturning circulation with strong upwelling occurring in low latitudes, the SOM simulations admit a circulation pattern closer to that known as the “reconfigured conveyor belt” (Toggweiler and Samuels, 1993), in which the bulk of the global ocean upwelling occurs in the Southern Ocean
    corecore