169 research outputs found

    AMD-stability in presence of first order Mean Motion Resonances

    Full text link
    The AMD-stability criterion allows to discriminate between a-priori stable planetary systems and systems for which the stability is not granted and needs further investigations. AMD-stability is based on the conservation of the Angular Momentum Deficit (AMD) in the averaged system at all orders of averaging. While the AMD criterion is rigorous, the conservation of the AMD is only granted in absence of mean-motion resonances (MMR). Here we extend the AMD-stability criterion to take into account mean-motion resonances, and more specifically the overlap of first order MMR. If the MMR islands overlap, the system will experience generalized chaos leading to instability. The Hamiltonian of two massive planets on coplanar quasi-circular orbits can be reduced to an integrable one degree of freedom problem for period ratios close to a first order MMR. We use the reduced Hamiltonian to derive a new overlap criterion for first order MMR. This stability criterion unifies the previous criteria proposed in the literature and admits the criteria obtained for initially circular and eccentric orbits as limit cases. We then improve the definition of AMD-stability to take into account the short term chaos generated by MMR overlap. We analyze the outcome of this improved definition of AMD-stability on selected multi-planet systems from the Extrasolar Planets Encyclopeadia.Comment: Accepted by A and A 07/10/1

    Mixing and transport of metals by gravitational instability-driven turbulence in galactic discs

    Get PDF
    Metal production in galaxies traces star formation, and is highly concentrated towards the centres of galactic discs. This suggests that galaxies should have inhomogeneous metal distributions with strong radial gradients, but observations of present-day galaxies show only shallow gradients with little azimuthal variation, implying the existence of a redistribution mechanism. We study the role of gravitational instability-driven turbulence as a mixing mechanism by simulating an isolated galactic disc at high resolution, including metal fields treated as passive scalars. Since any cylindrical field can be decomposed into a sum of Fourier–Bessel basis functions, we set up initial metal fields characterized by these functions and study how different modes mix. We find both shear and turbulence contribute to mixing, but the mixing strongly depends on the symmetries of the mode. Non-axisymmetric modes have decay times smaller than the galactic orbital period because shear winds them up to small spatial scales, where they are erased by turbulence. The decay time-scales for axisymmetric modes are much greater, though for all but the largest scale inhomogeneities the mixing time-scale is still short enough to erase chemical inhomogeneities over cosmological times. These different time-scales provide an explanation for why galaxies retain metallicity gradients while there is almost no variation at a fixed radius. Moreover, the comparatively long time-scales required for mixing axisymmetric modes may explain the greater diversity of metallicity gradients observed in high redshift galaxies as compared to local ones: these systems have not yet reached equilibrium between metal production and diffusion

    A low accretion efficiency of planetesimals formed at planetary gap edges

    Full text link
    Observations and models of giant planets indicate that such objects are enriched in heavy elements compared to solar abundances. The prevailing view is that giant planets accreted multiple Earth masses of heavy elements after the end of core formation. Such late solid enrichment is commonly explained by the accretion of planetesimals. Planetesimals are expected to form at the edges of planetary gaps, and here we address the question of whether these planetesimals can be accreted in large enough amounts to explain the inferred high heavy element contents of giant planets. We performed a series of N-body simulations of the dynamics of planetesimals and planets during the planetary growth phase, taking gas drag into account as well as the enhanced collision cross section caused by the extended envelopes. We considered the growth of Jupiter and Saturn via gas accretion after reaching the pebble isolation mass and we included their migration in an evolving disk. We find that the accretion efficiency of planetesimals formed at planetary gap edges is very low: less than 10% of the formed planetesimals are accreted even in the most favorable cases, which in our model corresponds to a few Earth masses. When planetesimals are assumed to form beyond the feeding zone of the planets, extending to a few Hill radii from a planet, accretion becomes negligible. Furthermore, we find that the accretion efficiency increases when the planetary migration distance is increased and that the efficiency does not increase when the planetesimal radii are decreased. Based on these results, we conclude that it is difficult to explain the large heavy element content of giant planets with planetesimal accretion during the gas accretion phase. Alternative processes most likely are required, such as accretion of vapor deposited by drifting pebbles

    Deep learning denoising by dimension reduction: Application to the ORION-B line cubes

    Get PDF
    Context. The availability of large bandwidth receivers for millimeter radio telescopes allows the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain much information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with inhomogenous signal-to-noise ratio (SNR) are major challenges for consistent analysis and interpretation.Aims. We search for a denoising method of the low SNR regions of the studied data cubes that would allow to recover the low SNR emission without distorting the signals with high SNR.Methods. We perform an in-depth data analysis of the 13 CO and C 17 O (1 -- 0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30m telescope. We analyse the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This allows us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13 CO (1 -- 0) cube, we compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state of the art procedure for data line cubes.Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase of the SNR in voxels with weak signal, while preserving the spectral shape of the data in high SNR voxels.Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems a promising avenue. In addition

    Kallikrein-related peptidase 5 contributes to H3N2 influenza virus infection in human lungs

    Get PDF
    Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths

    Get PDF
    The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome

    Likely Correlation between Sources of Information and Acceptability of A/H1N1 Swine-Origin Influenza Virus Vaccine in Marseille, France

    Get PDF
    BACKGROUND: In France, there was a reluctance to accept vaccination against the A/H1N1 pandemic influenza virus despite government recommendation and investment in the vaccine programme. METHODS AND FINDINGS: We examined the willingness of different populations to accept A/H1N1 vaccination (i) in a French hospital among 3315 employees immunized either by in-house medical personnel or mobile teams of MDs and (ii) in a shelter housing 250 homeless persons. Google was used to assess the volume of enquiries concerning incidence of influenza. We analyzed the information on vaccination provided by Google, the website of the major French newspapers, and PubMed. Two trust Surveys were used to assess public opinion on the trustworthiness of people in different professions. Paramedics were significantly more reluctant to accept immunisation than qualified medical staff. Acceptance was significantly increased when recommended directly by MDs. Anecdotal cases of directly observed severe infections were followed by enhanced acceptance of paramedical staff. Scientific literature was significantly more in favour of vaccination than Google and French newspaper websites. In the case of the newspaper websites, information correlated with their recognised political reputations, although they would presumably claim independence from political bias. The Trust Surveys showed that politicians were highly dis-trusted in contrast with doctors and pharmacists who were considered much more trustworthy. CONCLUSIONS: The low uptake of the vaccine could reflect failure to convey high quality medical information and advice relating to the benefits of being vaccinated. We believe that the media and internet contributed to this problem by raising concerns within the general population and that failure to involve GPs in the control programme may have been a mistake. GPs are highly regarded by the public and can provide face-to-face professional advice and information. The top-down strategy of vaccine programme management and information delivered by the Ministry of Health could have aggravated the problem, because the general population does not always trust politicians

    From Late Miocene to Holocene: Processes of Differentiation within the Telestes Genus (Actinopterygii: Cyprinidae)

    Get PDF
    Investigating processes and timing of differentiation of organisms is critical in the understanding of the evolutionary mechanisms involved in microevolution, speciation, and macroevolution that generated the extant biodiversity. From this perspective, the Telestes genus is of special interest: the Telestes species have a wide distribution range across Europe (from the Danubian district to Mediterranean districts) and have not been prone to translocation. Molecular data (mtDNA: 1,232 bp including the entire Cyt b gene; nuclear genome: 11 microsatellites) were gathered from 34 populations of the Telestes genus, almost encompassing the entire geographic range. Using several phylogenetic and molecular dating methods interpreted in conjunction with paleoclimatic and geomorphologic evidence, we investigated the processes and timing of differentiation of the Telestes lineages. The observed genetic structure and diversity were largely congruent between mtDNA and microsatellites. The Messinian Salinity Crisis (Late Miocene) seems to have played a major role in the speciation processes of the genus. Focusing on T. souffia, a species occurring in the Danube and Rhone drainages, we were able to point out several specific events from the Pleistocene to the Holocene that have likely driven the differentiation and the historical demography of this taxon. This study provides support for an evolutionary history of dispersal and vicariance with unprecedented resolution for any freshwater fish in this region
    corecore