64 research outputs found

    Walt Whitman, Leaves of Grass

    Get PDF
    Friday, February 9, 2018 (1-5pm) (authors: Lucas Person et Alexandra Tsovma, students at ENS) “The self-proclaimed loafing poet worked a lot to survive,” said Peter RILEY (Keynote Speaker, Lecturer in American Literature, University of Exeter) as an introduction to his lecture on Whitman and the working world: “‘Wet Paper Between Us’: Whitman, Intimacy, and the Transformations of Labor”. In this first keynote presentation, Peter Riley skilfully explored the links between Walt Whitman’s poetry..

    Ontogenic effects of early feeding of sea bass (Dicentrarchus labrax) larvae with a range of dietary n-3 HUFA levels on the functioning of PUFA desaturation pathways

    Get PDF
    Four replicated groups of sea bass (Dicentrarchus labrax) larvae were fed diets containing an extra-high level of highly unsaturated fatty acids (HUFA) (XH; 3·7% EPA + DHA), a high level of HUFA (HH; 1·7 %), a low level of HUFA (LH; 0·7%) or an extra-low level of HUFA (XLH; 0·5%) from day 6 to day 45 (experiment 1; XH1, HH1, LH1, XLH1). After a subsequent 1-month period feeding a commercial diet (2·7% EPA + DHA), the capacity of the four initial groups to adapt to an n-3 HUFA-restricted diet (0·3% EPA + DHA; R-groups: XH2R, HH2R, LH2R, XLH2R) was tested for 35 d. Larval dietary treatments had no effect on larval and juvenile survival rates. The wet weight of day 45 larvae was higher in XH1 and HH1 (P < 0·001), but the R-juvenile mass gains were similar in all treatments. D-6-desaturase (D6D) mRNA level was higher in LH1 and XLH1 at day 45 (

    Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Get PDF
    Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 ÎŒm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors

    Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    Get PDF
    On UT 29 June 2015, the occultation by Pluto of a bright star (râ€Č = 11.9) was observed from the Stratospheric Observatory for Infrared Astronomy (SOFIA) and several ground-based stations in New Zealand and Australia. Pre-event astrometry allowed for an in-flight update to the SOFIA team with the result that SOFIA was deep within the central flash zone (~22 km from center). Analysis of the combined data leads to the result that Pluto's middle atmosphere is essentially unchanged from 2011 and 2013 (Person et al. 2013; Bosh et al. 2015); there has been no significant expansion or contraction of the atmosphere. Additionally, our multi-wavelength observations allow us to conclude that a haze component in the atmosphere is required to reproduce the light curves obtained. This haze scenario has implications for understanding the photochemistry of Pluto's atmosphere

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
    • 

    corecore