5 research outputs found

    STP-H7-CASPR: A Transition from Mission Concept to Launch

    Get PDF
    The Configurable and Autonomous Sensor Processing Research (CASPR) project is a university-led experiment developed by student and faculty researchers at the NSF Center for Space, High-performance, and Resilient Computing (SHREC) at the University of Pittsburgh for the Space Test Program – Houston 7 (STP-H7) mission to the International Space Station (ISS). Autonomous sensor processing, the mission theme of the CASPR experiment, is enabled by combining novel sensor technologies with innovative computing techniques on resilient and high-performance flight hardware in a small satellite (SmallSat) form-factor. CASPR includes the iSIM-90, an innovative, high-resolution optical payload for Earth-observation missions developed by SATLANTIS MICROSATS SL. For the CASPR mission, the opto-mechanics of iSIM-90 will be mounted atop a gimbal-actuated platform for agile, low-GRD (ground-resolved distance), and multispectral Earth-observation imaging. This mission will also feature the Prophesee Sisley neuromorphic, event-driven sensor for space situational awareness applications. The CASPR avionics system consists of the following: three radiation-tolerant, reconfigurable space computers, including one flight-proven CSP and two next-gen SSPs; one μCSP Smart Module; one power card; and one backplane. CASPR also features a sub-experiment with an AMD GPU to evaluate new accelerator technologies for space. CASPR is a highly versatile experiment combining a variety of compute and sensor technologies to demonstrate on-orbit capabilities in onboard data analysis, mission operations, and spacecraft autonomy. As a research sandbox, CASPR enables new software and hardware to be remotely uploaded to further enhance mission capabilities. Finally, as a university-led mission, cost is a limiting constraint, leading to budget-driven design decisions and the use of affordable methods and procedures. Other factors, such as a power budget and limited equipment, facilities, and engineering resources, pose additional challenges to the CASPR mission. To address these challenges, we describe cost-effective procedures and methods used in the assembly, integration, and testing of the CASPR experiment

    CASPR: Autonomous Sensor Processing Experiment for STP-H7

    Get PDF
    As computing technologies improve, spacecraft sensors continue to increase in fidelity and resolution, their dataset sizes and data rates increasing concurrently. This increase in data saturates the capabilities of spacecraft-to-ground communications and necessitates the use of powerful onboard computers to process data as it is collected. The pursuit of onboard, autonomous sensor processing while remaining within the power and memory restrictions of embedded computing becomes vital to prevent the saturation of data downlink capabilities. This paper presents a new ISS research experiment to study and evaluate novel technologies in sensors, computers, and intelligent applications for SmallSat-based sensing with autonomous data processing. Configurable and Autonomous Sensor Processing Research (CASPR) is being developed to evaluate autonomous, onboard processing strategies on novel sensors and is set to be installed on the ISS as part of the DoD/NASA Space Test Program –Houston 7(STP-H7) mission. CASPR features a flight-qualified CSP space computer as central node and two flight-ready SSP space computers for apps execution, both from SHREC, a telescopic, multispectral imager from Satlantis Inc., an event-driven neuromorphic vision sensor, an AMD GPU subsystem, and Intel Optane phase-change memory. CASPR is a highly versatile ISS experiment meant to explore many facets of autonomous sensor processing in space

    Hidden Subluminous sd/wd among the FAUST UV sources toward OPHIUCHUS

    Full text link
    A UV image in the direction of Ophiuchus, obtained with the FAUST instrument is analysed. Suitable candidates as unrecognized subluminous stars are selected comparing the observed UV flux to the predicted one. The uv-excess objects were observed at the 1.0 m Wise telescope. This method yields to the detection of eight broad Balmer lines objects. Six are classified as sds and two wds, comparing the Hbeta line profile with that of stellar model atmospheres.Comment: 2 pages, including 2 figures. To appear in the Proceedings of the 13th European Workshop on White Dwarfs. NATO Science Series II, Kluwer Academic Publishe

    NASA SpaceCube Next-Generation Artificial-Intelligence Computing for STP-H9-SCENIC on ISS

    Get PDF
    Recently, Artificial Intelligence (AI) and Machine Learning (ML) capabilities have seen an exponential increase in interest from academia and industry that can be a disruptive, transformative development for future missions. Specifically, AI/ML concepts for edge computing can be integrated into future missions for autonomous operation, constellation missions, and onboard data analysis. However, using commercial AI software frameworks onboard spacecraft is challenging because traditional radiation-hardened processors and common spacecraft processors cannot provide the necessary onboard processing capability to effectively deploy complex AI models. Advantageously, embedded AI microchips being developed for the mobile market demonstrate remarkable capability and follow similar size, weight, and power constraints that could be imposed on a space-based system. Unfortunately, many of these devices have not been qualified for use in space. Therefore, Space Test Program - Houston 9 - SpaceCube Edge-Node Intelligent Collaboration (STP-H9-SCENIC) will demonstrate inflight, cutting-edge AI applications on multiple space-based devices for next-generation onboard intelligence. SCENIC will characterize several embedded AI devices in a relevant space environment and will provide NASA and DoD with flight heritage data and lessons learned for developers seeking to enable AI/ML on future missions. Finally, SCENIC also includes new CubeSat form-factor GPS and SDR cards for guidance and navigation

    Which method is best for the induction of labour?: A systematic review, network meta-analysis and cost-effectiveness analysis

    Get PDF
    Background: More than 150,000 pregnant women in England and Wales have their labour induced each year. Multiple pharmacological, mechanical and complementary methods are available to induce labour. Objective: To assess the relative effectiveness, safety and cost-effectiveness of labour induction methods and, data permitting, effects in different clinical subgroups. Methods: We carried out a systematic review using Cochrane methods. The Cochrane Pregnancy and Childbirth Group’s Trials Register was searched (March 2014). This contains over 22,000 reports of controlled trials (published from 1923 onwards) retrieved from weekly searches of OVID MEDLINE (1966 to current); Cochrane Central Register of Controlled Trials (The Cochrane Library); EMBASE (1982 to current); Cumulative Index to Nursing and Allied Health Literature (1984 to current); ClinicalTrials.gov; the World Health Organization International Clinical Trials Registry Portal; and hand-searching of relevant conference proceedings and journals. We included randomised controlled trials examining interventions to induce labour compared with placebo, no treatment or other interventions in women eligible for third-trimester induction. We included outcomes relating to efficacy, safety and acceptability to women. In addition, for the economic analysis we searched the Database of Abstracts of Reviews of Effects, and Economic Evaluations Databases, NHS Economic Evaluation Database and the Health Technology Assessment database. We carried out a network meta-analysis (NMA) using all of the available evidence, both direct and indirect, to produce estimates of the relative effects of each treatment compared with others in a network. We developed a de novo decision tree model to estimate the cost-effectiveness of various methods. The costs included were the intervention and other hospital costs incurred (price year 2012–13). We reviewed the literature to identify preference-based utilities for the health-related outcomes in the model. We calculated incremental cost-effectiveness ratios, expected costs, utilities and net benefit. We represent uncertainty in the optimal intervention using cost-effectiveness acceptability curves. Results: We identified 1190 studies; 611 were eligible for inclusion. The interventions most likely to achieve vaginal delivery (VD) within 24 hours were intravenous oxytocin with amniotomy [posterior rank 2; 95% credible intervals (CrIs) 1 to 9] and higher-dose (≥ 50 μg) vaginal misoprostol (rank 3; 95% CrI 1 to 6). Compared with placebo, several treatments reduced the odds of caesarean section, but we observed considerable uncertainty in treatment rankings. For uterine hyperstimulation, double-balloon catheter had the highest probability of being among the best three treatments, whereas vaginal misoprostol (≥ 50 μg) was most likely to increase the odds of excessive uterine activity. For other safety outcomes there were insufficient data or there was too much uncertainty to identify which treatments performed ‘best’. Few studies collected information on women’s views. Owing to incomplete reporting of the VD within 24 hours outcome, the cost-effectiveness analysis could compare only 20 interventions. The analysis suggested that most interventions have similar utility and differ mainly in cost. With a caveat of considerable uncertainty, titrated (low-dose) misoprostol solution and buccal/sublingual misoprostol had the highest likelihood of being cost-effective. Limitations: There was considerable uncertainty in findings and there were insufficient data for some planned subgroup analyses. Conclusions: Overall, misoprostol and oxytocin with amniotomy (for women with favourable cervix) is more successful than other agents in achieving VD within 24 hours. The ranking according to safety of different methods was less clear. The cost-effectiveness analysis suggested that titrated (low-dose) oral misoprostol solution resulted in the highest utility, whereas buccal/sublingual misoprostol had the lowest cost. There was a high degree of uncertainty as to the most cost-effective intervention
    corecore