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4 See www.nsf-shrec.org for more info
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• CASPR is a research mission at Pittsburgh SHREC site
o NSF Center for Space, High-performance,

and Resilient Computing (SHREC)
▪ Founded in 2017

▪ Formerly NSF Center for High-performance 
Reconfigurable Computing (CHREC) (2007-2017)

▪ Comprises 4 university sites and over 
30 industry and government partners

• CASPR was collaborative effort
o Builds on success and experience of 

STP-H5-CSP and STP-H6-SSIVP experiments

o Key development partners:
▪ DoD Space Test Program

▪ University of Pittsburgh

▪ SHREC Members

▪ Renesas, Infineon, Texas Instruments
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Space Test Program
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Space Test Program – Houston  
• Provides sole interface to NASA for all DoD payloads 

on International Space Station (ISS)

• Provides economic and efficient process to enable 

spaceflight opportunities for DoD space science and 

technology community

History of Mission Success
• Build upon successes of HREP, MISSE 6/7/8, STP-

H3, STP-H4, STP-H5, STP-H6 while incorporating 

valuable lessons learned

• STP in-house contractor (MEI Technologies) expertise 

allows for aggressive 2-year build/integration schedule

• Aerospace Corp provides assistance to Houston team 

with leadership and mission assurance roles

Image Courtesy DoD Space Test Program
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Hybrid Space-Computing Concept
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Computing
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Hybrid processor
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FPGA subsystem)

Robust Design 

(Novel mix of COTS, 

rad-hard, & DCA)
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Easy Development with CSP
• Selective component population scheme supports 

Engineering Model (EM) and Flight Model (FM)

• Rapid and cost-effective design prototyping using 

evaluation kit or Zedboard / Zybo / Pynq board

• Downloadable example software designs and 

configurations (Linux/RTEMs, cFE, etc.)

Specifications: 

•Xilinx Zynq 7020 (ARM dual-

core Cortex-A9 + Artix-7 FPGA)

• (1-4) GB NAND Flash

• (256 MB–1 GB)  DDR3 

•Dedicated Watchdog Unit

• Internal Power Regulation

• 26 Configurable 

ARM GPIO Pins

• 12 Single-Ended 

FPGA I/O Pins

• 24 High-Speed 

Differential Pairs

Order at spacemicro.com

CSP Rev. C 

Flight Model

STP-H5 

Flight Unit

Flight Heritage on STP-H5/6 

Radiation & Env. Tested

STP-H6 

Flight Unit

CHREC Space Processor (CSP)
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µCSP Smart Module
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Specifications: 

•SmartFusion 2 (ARM Cortex-M3 + FPGA) 

• 64 Mb NOR Flash

• 1 Gb LPDDR3 

•Dedicated Watchdog Unit

•ADC for board temp and 2 channels

for flyleaded measurements 

Even Smaller Solutions…
• Multifaceted hybrid processor 

at center of CSP Concept

• Even lower SWaP-C profile than CSP 

for small spacecraft missions

• Provided template for “Smart Module” designs

µCSP Smart 

Module

µCSP Top 

View
µCSP Bottom 

View
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Next-Generation SSP
• Builds upon CSP to create new platform with 

improved computational, memory, and 

communication capabilities

• Supports Engineering Model (EM) and 

Flight Model (FM) configurations

SHREC Space Processor (SSP)

SSP FM

Specifications: 

•Xilinx Zynq 7030/35/45 (ARM dual-core Cortex-

A9 + Kintex-7 FPGA)

• (1-4) GB NAND Flash

• 1GB PS-DDR3L and 4GB 

PL-DDR3L Memory

•Dedicated Watchdog Unit

• Internal Power Regulation

• 28 Configurable 

ARM GPIO Pins

• 31 High-Speed 

Differential Pairs

• 8 MGT Lanes for High-

speed Communication
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AMD Space GPU (SGPU)

AMD Embedded GX-216HC SoC
• Commercially purchased Qseven Module

• Sub-1U SoM card with application-

specific carrier card

• Allows for on-board execution 

of deep-learning applications  

Specifications: 

• 16GB non-volatile, onboard memory

• 4GB DDR3 memory

• Lubuntu 18.04 OS

• 100 Mbps Ethernet 

• 12W power limit

•Custom carrier card

AMD GPU Qseven Module

Carrier Card
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CASPR Introduction
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Prophesee Sisley neuromorphic, 

event-driven sensor and 

SATLANTIS iSIM-90 optical imager

Study and evaluate new technologies in 

sensors, computer systems, and deep-

learning apps for space-based sensing 

with autonomous sensor processing

Motivation

Run onboard autonomous sensor 

processing apps in machine-

learning and computer-vision

6U computing payload (2 SSPs, 

CSP, µCSP Smart Module, Power 

Card, SGPU, Backplane)
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Prophesee Sisley

Event-driven Neuromorphic Sensor
• Developed by Prophesee

• Composed of independent pixels sensitive 

to events in their field-of-view (FoV)

• Captures in time domain and generates 

asynchronous stream of events

• Reports only dynamic changes in light intensity

• Records at low temporal resolutions 

while maintaining low data rate

Specifications: 

•30 × 30 𝜇𝑚 pixel size

• 640 x 480 pixel resolution

• 66 mega-events per second
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SATLANTIS iSIM-90

Binocular Camera System
• Collaboration with SATLANTIS

• Next-generation, multispectral, high-resolution 

optical imager for Earth observation

• Combines class-leading performance via use of 

cutting-edge technologies

• Provides diffraction-limited images from blue 

band to near-infrared (NIR) band

Specifications: 

•GRD @ 400𝑘𝑚: 3.7𝑚

•GSD @ 400𝑘𝑚: 2.2𝑚

• Ideal operating temperatures: 23 ± 3 °𝐶

•Multi-spectral super-resolution algorithms

• 12MP @ 6.3 FPS 

iSIM-90 Optics
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Flight Electronics

Backplane

Power Card

Prophesee Sisley

SGPU

CSP Rev. C FM2x SSP FM

µCSP Smart Module

SATLANTIS iSIM-90
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System Architecture
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Flight Software

Software Architecture
• Includes Linux operating system and core 

Flight Software supplemented by drivers, 

services, and applications

• CSP and SSP run Wumbo Linux

• SGPU runs Lubuntu 18.04 LTS

Services and Applications
• Core Flight Executive (cFE)

• Mission-independent software services

• Core Flight System (cFS)

• Applications and libraries running on cFE

FPGA Management
• CSP and SSP feature complete 

hardware/software stacks to facilitate high-

throughput imaging and FPGA acceleration
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Design and Development

Initial Design and Development
• Mission objective formulated and architecture 

designed using modular and iterative approach

• Network topology designed iteratively to connect 

all modules into one system architecture

Preliminary Testing
• Testing performed on available 

development kits prior to FlatSat

• FlatSat designed to integrate flight cards 

with connections to peripherals for validation

Design for Flight
• Parts on flight cards epoxied for stability 

and to survive launch conditions

• Each flight card conformally coated to 

survive harsh environment of space



21

Integration and Testing

Assembly
• All flight cards assembled in chassis and 

integrated with custom flight harnesses

• Sisley encased using custom aluminum enclosure

• iSIM-90 mounted atop gimbal-actuated platform

Testing and Validation
• Software iteratively installed, verified, and 

adapted throughout assembly process

• Scripts prepared to properly initialize and 

configure hardware for functional verification

Environmental Testing
• Workmanship vibration and thermal-vacuum 

testing performed at Naval Research Lab to 

ensure system survival
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Conclusions

• Advancements in sensor technologies
o Introduces big-data challenges due to massive 

datasets and limitations in downlink

o Escalates app demands for autonomous sensor processing

o Tightens constraints in size, weight, power, and cost

• Autonomous sensor processing on STP-H7
o Focuses on evaluating new sensor technologies

▪ Prophesee Sisley neuromorphic sensor 
and SATLANTIS iSIM-90 optical imager

o Expands computing capabilities

▪ Combines novel sensor technologies with innovative computing 
techniques on resilient and high-performance flight hardware

• CASPR was successfully delivered to STP at NASA Johnson 
Space Center to be integrated onto STP-H7 pallet

22
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More Information?  

Dr. Alan D. George (PI), Department Chair, R&H Mickle Endowed Chair,

Professor of ECE, and NSF SHREC Center Director

NSF Center for Space, High-performance, and Resilient Computing (SHREC)

ECE Department, University of Pittsburgh

1238D Benedum Hall, 3700 O’Hara Street Pittsburgh, PA 15261 412-624-9664

Email: alan.george@pitt.edu or alan.george@nsf-shrec.org

Seth Roffe, CASPR Experiment Manager

Email: seth.roffe@nsf-shrec.org
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Questions?


