8,871 research outputs found

    Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels

    Get PDF
    The cloning of the cDNA for the α1 subunit of L-type calcium channels revealed that at least two genes (CaCh1 and CaCh2) exist which give rise to several splice variants. The expression of mRNA for these α1 subunits and the skeletal muscle α2/δ, β and γ subunits was studied in rabbit tissues and BC3H1 cells. Nucleic-acid-hybridization studies showed that the mRNA of all subunits are expressed in skeletal muscle, brain, heart and aorta. However, the α1-, β- and γ-specific transcripts had different sizes in these tissues. Smooth muscle and heart contain different splice variants of the CaCh2 gene. The α1, β and γ mRNA are expressed together in differentiated but not in proliferating BC3H1 cells. A probe specific for the skeletal muscle α2/δ subunit did not hybridize to poly(A)-rich RNA from BC3H1 cells. These results suggest that different splice variants of the genes for the α1, β and γ subunits exist in tissues containing L-type calcium channels, and that their expression is regulated in a coordinate manner

    The [OIII] emission line luminosity function of optically selected type-2 AGN from zCOSMOS

    Get PDF
    We present a catalog of 213 type-2 AGN selected from the zCOSMOS survey. The selected sample covers a wide redshift range (0.15<z<0.92) and is deeper than any other previous study, encompassing the luminosity range 10^{5.5} < Lsun< L[OIII] < 10^{9.1} Lsun. We explore the intrinsic properties of these AGN and the relation to their X-ray emission (derived from the XMM-COSMOS observations). We study their evolution by computing the [OIII]5007A line luminosity function (LF) and we constrain the fraction of obscured AGN as a function of luminosity and redshift. The sample was selected on the basis of the optical emission line ratios, after applying a cut to the signal-to-noise ratio (S/N) of the relevant lines. We used the standard diagnostic diagrams [OIII]/Hbeta versus [NII]/Halpha and ([OIII]/Hbeta versus [SII]/Halpha) to isolate AGN in the redshift range 0.15<z<0.45 and the diagnostic diagram [OIII]/Hbeta versus [OII]/Hbeta to extend the selection to higher redshift (0.5<z<0.92). Combining our sample with one drawn from SDSS, we found that the best description of the evolution of type-2 AGN is a luminosity-dependent density evolution model. Moreover, using the type-1 AGN LF we were able to constrain the fraction of type-2 AGN to the total (type-1 + type-2) AGN population. We found that the type-2 fraction decreases with luminosity, in agreement with the most recent results, and shows signs of a slight increase with redshift. However, the trend with luminosity is visible only after combining the SDSS+zCOSMOS samples. From the COSMOS data points alone, the type-2 fraction seems to be quite constant with luminosity.Comment: 20 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008

    Get PDF
    The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper, we determine its spectral energy distribution using simultaneous multi-frequency data in order to study its emission processes. An extensive campaign was carried out between March and April 2008, where optical, X-ray, high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC telescopes, respectively. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation, though AGILE did not detect the source. We combine data to derive source's spectral energy distribution and interpret its double peaked shape within the framework of a synchrotron self compton modelComment: 5 pages, 2 figures, publishe

    Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS

    Get PDF
    We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime ( 8 x 10^45 erg/s) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. We confirm that obscured quasars mainly reside in massive galaxies (Mstar>10^10 Msun) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color-magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between star-formation rate and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~1, ~62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ~71% at z ~2, and 100% at z ~3. We also find that the the evolution from z ~1 to z ~3 of the specific star-formation rate of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge-dominated galaxies, and that only a few of them exhibit signs of recent mergers or disks. Finally, bulge-dominated galaxies tend to host Type-2 QSOs with low Eddington ratios (lambda<0.1), while disk-dominated or merging galaxies have at their centers BHs accreting at high Eddington ratios (lambda > 0.1).Comment: Accepted by A&A. 20 pages, 16 figures, 2 tables. A version with higher resolution figures and SED fits of Appendix A is available at http://www.eso.org/~vmainier/QSO2/qso2.pd

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+eJ/ψπ+πe^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb1\mathrm{fb^{-1}}. We investigate the J/ψπ+πJ/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 11415+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π\pi^{+}\pi^{-} system which results from Y(4260) decay
    corecore