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High-Voltage Activated Ca2 + Channel 
F. HOFMANN, M . BIEL, E . BOSSE, R . HULLIN, P . RUTH, A . WELLING, 
and V. FLOCKERZI 

A. Introduction 
Calcium Channels are part of the signal System which is vital for intercellular 
communication in higher multicellular organisms. They transduce electrical 
or hormonal Signals into a chemical second messenger, namely calcium. The 
cytosolic calcium concentration controls numerous cellular functions by 
binding to distinct calcium receptor binding proteins such as calmodulin, 
troponin, or calcium-activated potassium Channels. Voltage-dependent 
calcium Channels are of particular interest since their opening or closing 
determinates the cellular calcium concentration of many cells. In the normal 
heart they are essential to the generation of normal cardiac rhythm, to 
impulse propagation through the atrioventricular node, and to contraction in 
atrial and ventricular muscle. In vascular smooth muscle calcium Channels 
provide part of the calcium that controls smooth muscle contraction and 
vascular tone. In skeletal muscle they are an essential part of the tubulär 
excitation-contraction coupling mechanism. In neuronal and neuroendocrine 
cells they are essential for neurotransmitter release (for recent reviews see 
BERTOLINO and LLINAS 1992; BROWN and BIRNBAUMER 1990; MILLER 1992; 
Rios et al. 1992; TRAUTWEIN and HESCHELER 1990). 

B. Identified cDNAs of High-Voltage Activated Calcium 
Channels 
High-voltage activated calcium Channels are present in many tissues and are 
the major pathway for voltage-dependent calcium entry in excitable cells. 
They are activated at a high membrane potential, inactivate slowly (long 
lasting) and are readily blocked by different Compounds. L-type calcium 
Channels are blocked by the organic calcium Channel blockers (CaCB) such 
as nifedipine and Verapamil, N-type by w-conotoxin, and P-type by the 
funnel web Spider toxin a>-Age IVA (MINTZ et al. 1992). The principal 
channel-forming subunit of a high-voltage activated calcium Channel is the 
ax subunit. When purified from rabbit skeletal muscle, this protein 
(apparent molecular mass 165 kDa) is associated with a 55-kDa protein (/?), 
a 32-kDa protein (y), and a disulfide-linked dimer of 130/28 kDa ( a 2 / S ) (see 
HORMANN et al. 1990 and references cited there). The primary structure of 



Table 1. Classification of cloned and expressed mammalian calcium Channel cDNA's 
Gene Snutch class Source Species Functionally expressed Sensitive to Reference 
ax subunit 
CaChl - Skeletal muscle Rabbit Yes DHP TANABEet al. 1987 CaCh2a C Heart Rabbit Yes DHP MIKAMI et al. 1989 Brain Rat - SNUTCH et al. 1991 CaCh2b C Lung, smooth muscle Rabbit Yes DHP BIEL et al. 1990 Brain Rat - SNUTCH et al. 1991 Aorta Rat Yes DHP KOCH et al. 1990 CaCh3 D Brain Human Yes DHP, co-conotoxin WILLIAMS et al. 1992a Brain Rat - Hui et al. 1991 Pancreatic islet Human - SEINO et al. 1992 CaCh4 A Brain Rabbit Yes Spider venom MORI et al. 1991 Brain Rat -

Spider venom 
STARR et al. 1991 CaCh5 B Brain Human Yes w-Conotoxin WILLIAMS et al. 1992b Brain Rat - w-Conotoxin BuBELet al. 1992 

a->lö subunit 
CaA2la - Skeletal muscle Rabbit Yes - ELLIS et al. 1988; MIKAMI et al. 1989 Brain Human Yes WILLIAMS et al. 1992a CaA2lb - Brain Rat - KIM et al. 1992 
ß subunit 
CaBl - Skeletal muscle Rabbit Yes - RUTH et al. 1989 Brain Rat - PRAGNELLet al. 1991 Brain Human Yes - WILLIAMS et al. 1992a CaB2* - Heart Rabbit Yes - HULLIN etal. 1992 Brain Rat Yes - PEREZ-REYES et al. 1992 CaB3 - Heart Rabbit Yes - HULLIN et al. 1992 
7 subunit 
CaGl - Skeletal muscle Rabbit Yes - JAY et al. 1990; BOSSE et al. 1990 
Only füll length clones have been included in this table. The nomenclature used for the a, subunit is adapted from PEREZ-REYES et al. (1990). For the Snutch classes see SNUTCH et al. (1990). The references in the table refer to the first published sequence. In some cases functional expression of the particular clone has been reported in a different publication. - , not reported; D H P , dihydropyridine; *, at least three different variants (a-c) of the same gene have been identified. 
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Fig. 1. Proposed topography of the a x subunit of the skeletal muscle calcium Channel 
gene CaChl. Shaded areas, proposed binding site for dihydropyridines ( D H P ) and 
phenylalkylamines ( P A A ) . P, the in vitro identified cAMP kinase phosphorylation 
sites, dashes, the proposed truncation of the carboxy terminus; + , the amphipathic 
helix S4. Below, the amphipathic helix S4 sequence is compared with the S4 helices 
of other voltage-dependent ion Channels 

these proteins has been deduced by cloning their cDNAs (see Table 1 for 
references). 

I. The a, Subunit 
Complete cDNA clones of four different a{ subunit gene produets (CaCh 
1-4) have been sequenced and shown to direct the synthesis of functional 
calcium Channel after expression of their cRNA in Xenopus oocytes or cell 
culture cells (Table 1). The primary sequences of these different gene 
produets are homologous to each other and predict a transmembrane 
topology which is similar to that of other voltage-dependent ion Channels 
(Fig. 1). The primary sequences of the ax subunits predict proteins of 
212-273 kDa containing four homologous repeats, each of which is 
composed of five hydrophobic putative transmembrane a helices and one 
amphipathic segment (S4) (TANABE et al. 1987; Fig. 1). The "extracellular" 
loop between the transmembrane helices 5 and 6 (SS1-SS2 region) is 
predicted to fold into the membrane and to form part of the pore of the 
Channel (GUY and CONTI 1990). The skeletal and the cardiac/smooth muscle 
calcium Channels are encoded by two different genes, CaChl and CaCh2. 
Several splice variants of the CaCh2 gene have been identified (BIEL et al. 
1991). One major difference is the presence of two different exons at the 
transmembrane region I V S3 which alternate between the cardiac (CaCh2a) 
and smooth muscle (CaCh2b) isochannels. Polymerase chain reaction (PCR) 
amplification of the sequences around I V S3 suggests that a deletion within 
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each exon results in two additional splice variants (PEREZ-REYES et al. 1990). 
The two alternative Channels CaCh2a and CaCh2b have been expressed 
stably in CHO-cells. 

No major differences in basic electrophysiological characteristics have 
been observed, including the amplitude and voltage dependence of inward 
current and time of activation and inactivation (WELLING et al. 1992b). 
However, the two splice variants are expressed differentially in heart and 
smooth muscle (BIEL et al. 1991) and during cardiac development (DIEBOLD 
et al. 1992). The third gene is expressed in neuroendocrine tissues, whereas 
the forth gene appears to be brain specific. The currents induced by the 
expression of the CaChl, CaCh2, and CaCh3 genes are inhibited by low 
concentrations of dihydropyridines and therefore are classified as L-type 
calcium Channels. The neuroendocrine Channel CaCh3 is inhibited only at 
rather high concentration by co-conotoxin and is not an N-type calcium 
Channel. The current through the CaCh4 gene product is not affected by 
dihydropyridines but is inhibited by low concentrations of a mixture of the 
funnel web spider toxines and has been classified as a neuronal P-type 
Channel. The ax subunit of CaCh5 has a high-affinity co-conotoxin binding 
site (DÜBEL et al. 1992; WILLIAMS et al. 1992b) and is expressed as calcium 
Channel only in the presence of the ß and a 2 subunits. The current is 
inhibited at picomolar concentrations of w-conotoxin (WILLIAMS et al. 
1992b), identifying the CaCh5 protein as a neuronal N-type Channel. 

II. The a2lö Subunit 
The deduced amino acid sequence of the a 2 l 8 protein is that of a membrane 
protein of 125018Da (ELLIS et al. 1988; Table 1). It contains three putative 
transmembrane segments and a large extracellular domain with several 
consensus sequences for glycosylation. The S subunit sequence is identical 
with the carboxy terminal part of the deduced primary structure of the a 2 

cDNA starting at amino acid 935 of the predicted sequence ( D E JONGH et al. 
1990). Presumably, the mature a 2 and ö proteins are the product of the 
same gene and arise by posttranslational processing. The mature a 2 protein 
may be located completely extracellularly, linked by a disulfide bridge to the 
transmembrane 8 protein (JAY et al. 1991). Immuno- (NORMAN et al. 1987) 
and northern blots (ELLIS et al. 1990; BIEL et al. 1991) show that the a2lö 
protein is expressed in skeletal muscle, heart, brain, airway, vascular, and 
intestinal smooth muscle. Northern blots have identified a predominant 
8-kB and a low-abundance 7-kB transkript with a skeletal muscle a 2 probe 
at high and low stringency (BIEL et al. 1991). Recently an a 2 l 8 cDNA has 
been cloned from human brain which is identical to the skeletal muscle a2lö 
cDNA (WILLIAMS et al. 1992a). A splice variant of this a2lö gene has been 
cloned from rat brain, which differs in part from the putative a 2 proteins but 
contains an identical 6 protein (KIM et al. 1992). These results suggest that 
heart, brain, and smooth muscle express a conserved a 2 protein whereas 
brain contains an additional a2/S protein. 
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III. The)?Subunit 
The deduced primary sequence of the skeletal muscle ß subunit is 
compatible with that of a peripheral membrane protein of 57 868 Da (Table 
1; RUTH et al. 1989). It contains four a-helical domains, each of which 
contains a homologous Stretch of eight amino acids. Domains II, IUI, and 
IV contain a heptad repeat structure. Heptad repeats have been found in 
cytoskeletal proteins. This suggests that the ß subunit may be a cytoskeletal 
protein which anchors the ax subunit to the cytoskeleton. The /Mike proteins 
which are different from the skeletal muscle ß subunit exist in heart, aorta, 
and brain and are derived from two different genes (CaB2 and CaB3; 
HULLIN et al. 1992). The primary transcript of CaB2 is differentially spliced 
and leads to the expression of at least three different isoforms (CaB2a, 
CaB2b, and CaB2c). The overall homology between the novel ß subunits 
found in heart, aorta, and brain and the skeletal muscle ß subunit (CaBl) is 
71% for CaB2a, 71.5% for CaB2b, and 66.6% for CaB3. Northern blot and 
PCR analyses show that CaBl is present in large amounts in skeletal muscle 
and brain, CaB2 in heart and aorta, and CaB3 in brain and tissues which are 
rieh in smooth muscle such as aorta, lung, and trachea. 

IV. T h e y Subunit 
The deduced primary sequence of the skeletal muscle y subunit is in 
agreement with that of an integral membrane protein of 25 058 Da (Table 1; 
BOSSE et al. 1990; JAY et al. 1990). The deduced sequence contains four 
putative transmembrane domains and two glycosylation sites which are 
located extracellularly. A complete cDNA for the y subunit has been 
detected only in skeletal muscle. Northern and PCR analyses have not 
indicated that the same mRNA is present in higher concentrations in other 
tissues. 

C. Structure-Function of the Cloned Calcium Channel 
Proteins 
I. Expression and Function of the Channel Subunits 
The cloned cDNA of the four calcium Channel genes has been expressed in 
different cells (Table 2). The skeletal muscle ax subunit (CaChl) has been 
expressed in L cells (PEREZ-REYES et al. 1989; LACERDA et al. 1991; VARADI 
et al. 1991) and skeletal muscle myotubes from mice with the muscular 
dysgenesis mutation (TANABE et al. 1988). Neither cell type has a functional 
<i\ subunit. The mice myotubes contained the a2 and the other subunits may 
also be present. Expression of the skeletal muscle ax subunit (CaChl) in L 
cells induces a barium current which activates extremely slowly (ract. 
—665 ms; PEREZ-REYES et al. 1989). Channel activation is accelerated 75-fold 



Table 2. Functional effects of calcium Channel subunits on currents induced by different ax subunits 
a{ Gene Subunits Cell DHP IBab Activation Voltage Reference 

expressed line sitesa time dependencec 

Heterologous subunits 
CaCh2a «2 Oocyte ( t ) - - MIKAMI et al. 1989 CaCh2a «2 Oocyte ( t ) 4 ( t ) SINGER et al. 1991 
CaCh2a ß Ooctye (T) (4) (T) SINGER et al. 1991 
CaCh2a y Oocyte (T) (4) t T SINGER et al. 1991 
CaCh2a Oocyte T T 4 t SINGER et al. 1991 
CaCh2a Oocyte t t 4 t t SINGER et al. 1991 
CaCh2a ß Oocyte T 4 WEI et al. 1991 
CaCh2a ßy Oocyte t (4) (T) WEI et al. 1991 
CaCh2b ß CHO T T (4) ( t) WELLING et al. 1992 
CaCh2a ß Oocyte ( t) ITAGAKI et al. 1992 
CaCh3 ß Ooctye T - - WILLIAMS et al. 1992a 
CaCh4 Ooctye t t - - MoRiet al. 1991 
Homologous subunits 

1 CaChl ß Lcell 1 - LACERDA et al. 1991 CaChl Lcell (; ;) - VARADI et al. 1991 
CaChl ß Lcell 

(; ;) 4* - VARADI et al. 1991 
CaChl y Lcell 4* - VARADI et al. 1991 
CaChl ßy Lcell 4* (4) - VARADI et al. 1991 
CaChl aißy Lcell ( : (4) - VARADI et al. 1991 
CaCh2a ßi Oocyte 

( : 
t 4 - HULLIN et al. 1992 

CaCh2a Oocyte t 4 - HULLIN et al. 1992 
CaCh2a ßi Oocyte - t 4 ( t ) PEREZ-REYES et al. 1992 
CaCh2a ßi COS T - - PEREZ-REYES et al. 1992 CaCh5 HEK293 t ?§ t t - - WILLIAMS et al. 1992b 
All effects are compared with that of cells expressing only the a\ subunit. 
aThe number of dihydropyridine binding sites per mg protein. 
b Barium inward current. 
c A shift in voltage dependence of the I/V curve or steady State activation or inactivation to more negative values. 
a2, ß and y are identical with CaAla, CaBl and CaGl. - , not reported; ~ , similar to cells expressing ax alone; *, IBa not sensitive to 
BayK 8644. ( | ) , T , and | f small, moderate and large increase or shift; ( | ) and | , small and moderate decrease; §, w-conotoxin 
binding sites. 
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(?act. —8ms) by the coexpression of the skeletal muscle ß subunit (CaBl; 
LACERDA et al. 1991). Expression of the skeletal muscle a x subunit in the 
dysgenic myotubes generates cells with a slowly activating calcium current 
and normal skeletal muscle excitation-contraction coupling, which does not 
depend on the influx of calcium (TANABE et al. 1988). Expression of the 
cardiac muscle ax subunit (CaCh2a) produces myotubes with Ca2+ currents 
and excitation contraction coupling as in cardiac muscle (TANABE et al. 
1990). TANABE et al. (1990) constructed several chimeras by starting with the 
cardiac muscle ax subunit and introducing skeletal musclelike intracellular 
loops. Changing the large intracellular loop that connects repeats II and III 
switched the mode of excitation-contraction coupling to that characteristic of 
skeletal muscle. Interestingly, however, the Ca2 + current produced by this 
chimera remained characteristic of cardiac muscle, i.e., rapidly activating. 
Chimeras in which the four homologous repeats of the cardiac muscle 
protein were each switched to the equivalent skeletal muscle sequence 
showed that changing merely the first homologous repeat switched the 
characteristics of the Ca2 + current from fast activating (cardiac type) to 
slowly activating (skeletal muscle type) whereas switching the other three 
repeats did not have this effect (TANABE et al. 1991). 

Stable expression of the ax subunits from smooth muscle (CaCh2b) in 
CHO cells induces dihydropyridine-sensitive barium currents, which have 
the physiological characteristics as a smooth muscle calcium Channel (BOSSE 
et al. 1992). The single-channel conductance is 26 pSi in the presence of 
80 mM Ba 2 + . The Channel has the same voltage dependence of activation 
and inactivation as reported for the naturally occurring smooth muscle 
calcium Channel. The cardiac ax subunit (CaCh2a) cDNA directs the 
expression of a Channel with electrophysiological properties which are 
indistinguishable from those of the smooth muscle a x subunit (WELLING et 
al. 1992b). Stable coexpression of the CaCh2b protein with the skeletal 
muscle ß gene (CaBl) increases in parallel the number of dihydropyridine 
binding sites and the amplitude of whole cell barium current, suggesting that 
the amplitude of inward current is directly related to the number of 
expressed a x subunits of the protein (WELLING et al. 1993). In addition, the 
coexpression of the ß subunit decreases the activation time of the Channel by 
a factor of two and shifts the voltage dependence of steady State inactivation 
by 18mV to - 1 3 mV (WELLING et al. 1993). Coexpression of the ß subunit 
does not influence the sensitivity of the expressed Channel toward the 
dihydropyridine agonist Bay K 8644. Similar results were obtained by 
coexpression of the cardiac (CaCh2a), smooth muscle (CaCh2b), 
neuroendocrine (CaCh3), and neuronal (CaCh4) ax subunit with the skeletal 
muscle ß subunit (CaBl) in Xenopus oocytes (Table 2). In each case the 
current density increased with coexpression of the ß subunit (CaBl). 
Expression of the N type ax subunit CaCh5 in HEK239 cells requires the 
presence of a neuronal ß (CaBl) and a 2 subunit to induce w-conotoxin 
binding sites and calcium current (WILLIAMS et al. 1992b). 
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The coexpression of the ax (CaCH2a) and ß ( C a B l - 3 ) subunit together 
with the a 2 subunit cRNA enhanced also the barium current in Xenopus 
oocytes. In Xenopus oocytes the a 2 subunit (SINGER et al. 1991) and the ß 
subunit (WEI et al. 1991) decreased the activation time of the Channel 
(CaCh2a). Identical results were observed when the cardiac ax subunit 
(CaCh2a) was coexpressed with the cardiac (CaB2) or the smooth muscle/ 
neuronal (CaB3) ß subunit and the a 2 subunit (HULLIN et al. 1992) in 
Xenopus oocytes. The skeletal muscle y subunit (CaGl) shifted the voltage 
dependence of steady-state inactivation of the cardiac ax subunit (CaCh2a) 
by 40 mV to a negative membrane potential as is observed in skeletal 
muscle. These results suggest that (a) the skeletal muscle ß subunit interacts 
with different ax subunits, (b) the ß subunits increase barium currents by 
increasing the number of functional calcium Channel proteins, and (c) the ß 
subunits affect the activation time of the Channel and the voltage 
dependence of steady-state inactivation. These conclusions are not 
supported by the experiments of VARADI et al. (1991), who reported that 
homologous coexpression of skeletal muscle ax and /?, ax and y, ax, ß and y, 
ax, a2, ß and y in L cells decreases the inward current and the stimulatory 
effect of the calcium Channel agonist Bay K 8644. The latter results are 
difficult to reconcile with those from other laboratories. They could be 
caused by a nonstoichiometric expression of the Channel subunits, i.e., a 
higher expression of the ß subunit than the a x subunit (LORY et al. 1992). 

IL The Binding Sites for Calcium Channel Blockers 
Photoaffinity labeling of the skeletal muscle ax subunit and expression of 
CaChl and CaCH2b gene in L cells (KIM et al. 1990) or CHO cells (BOSSE 
et al. 1992) shows that the ax subunit itself contains the binding sites for the 
known organic calcium Channel blockers, the dihydropyridines, 
phenylalkylamines, and benzothiazepines. Binding of these drugs requires 
the binding of calcium to a high-affinity binding site (SCHNEIDER et al. 1991; 
STAUDINGER et al. 1991). The allosteric modulation of the dihydropyridine 
binding site by phenylalkylamine and benzothiazepine is preserved within 
each a x subunit (KIM et al. 1990; BOSSE et al. 1992). The current induced in 
cell culture cells or Xenopus oocytes by the CaChl, CaCh2a, and CaCh2b 
proteins is increased by Bay K 8644, a calcium Channel agonist, and is 
inhibited by the known calcium Channel blockers. 

Photoaffinity labeling of the purified skeletal muscle ax subunit by 
dihydrophyridines and phenylalkylamines suggests that the dihydropyridines 
bind to the SS1-SS2 region of repeat III (STRIESSNIG et al. 1991; NAKAYAMA 
et al. 1991) and apparently to a sequence following IVS6 (REGULLA et al. 
1991) (Fig. 1). The extracellular location of the binding site at the SS1-SS2 
region of repeat III is supported by the finding that dihydropyridines block 
the calcium Channel from the extracellular space (KASS et al. 1991). The 
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phenylalkylamines label a second putative intracellular site located directly 
after the IVS6 (STRIESSNIG et al. 1990). 

III. Phosphorylation of the Channel Proteins 
The L-type current of cardiac, smooth and skeletal muscle, neuroendocrine, 
and neuronal calcium Channels is modulated by hormones through the a 
subunits of different G-proteins (BROWN and BIRNBAUMER 1990). The open 
probability of the cardiac and skeletal muscle and of some neuroendocrine 
cells is increased by cAMP-dependent phosphorylation, suggesting that 
phosphorylation of the a{ subunit or a different subunit of the calcium 
Channel is important for its hormonal control. In skeletal muscle, about 90% 
of the full-length ax subunit (CaChl) is apparently processed to a smaller 
protein with the carboxy terminus being close to amino acid residue 1690 
( D E JONGH et al. 1991). cAMP-kinase phosphorylates in vitro rapidly Ser-
687 (RÖHRKASTEN et al. 1988), which is located at the cytosolic loop between 
repeat II and III, and Ser-1854 (ROTMAN et al. 1992), which is present only 
in the full-length skeletal muscle ax subunit, and slowly Ser-1617 
(RÖHRKASTEN et al. 1988). Phosphorylation of these sites may be significant, 
since the open probability of the reconstituted skeletal muscle CaCB-
receptor/calcium Channel is increased several-fold by cAMP-dependent 
phosphorylation (FLOCKERZI et al. 1986; HYMEL et al. 1988; NUNOKI et al. 
1989; MUNDINA-WEILENMANN et al. 1991). The a x subunit is phosphorylated 
also in vivo at least at two sites in response to isoproterenol in isolated rat 
myocytes (LAI et al. 1990; MUNDINA-WEILENMANN et al. 1991). 

These in vivo phosphorylation sites may be identical with Ser-687 and 
Ser-1854. However, it is not clear which of these phosphorylation sites - one 
of which is present only in the unprocessed ax subunit - affect the open 
probability of the skeletal muscle calcium Channel. The in vitro identified 
phosphorylation sites of the CaChl gene are not conserved in the sequences 
of the other calcium Channel genes and therefore are not important for the 
hormonal regulation of the calcium Channel in heart and neuroendocrine 
cells. The hormonal control of the calcium Channels may be exerted by 
tissue specific ß subunits. The deduced amino acid sequence of the skeletal 
ß subunit (CaBl) contains several potential phosphorylation sites. Two of 
these sites, Ser-182 and Thr-205, are phosphorylated in vitro by cAMP 
kinase (RUTH et al. 1988; D E JONGH et al. 1989). The produets of the CaB2 
gene contain a cAMP-kinase phosphorylation site equivalent to Thr-205 of 
CaBl. This phosphorylation site is not present in the product of CaB3, 
which is expressed mainly in brain and smooth muscle (HULLIN et al. 1992). 
This is interesting since in vivo whole cell calcium current is increased in 
heart (KAMEYAMA et al. 1986) and skeletal muscle (GARCIA et al. 1990) but 
not smooth muscle (WELLING et al. 1992a) by cAMP-dependent 
phosphorylation. Expression of the cardiac ax subunit with the a 2 and ß 
subunit in Xenopus oocytes indicates that cAMP-dependent regulation of 



234 F. HOFMANN et al. 
the cardiac calcium Channel is mediated by phosphorylation of the ß subunit 
(KLÖCKNER et al. 1992; DASCAL et al. unpublished Observation). 

D. Conclusion 
High-voltage activated calcium Channels are encoded by different genes. 
Their electrophysiological and hormonal regulation may depend on the 
coexpression of different subunits. The interaction of these Channel subunits 
with additional proteins such as the a subunit of trimeric G-proteins may be 
required for basic and hormonal regulation of the Channel (HAMILTON et al. 
1991; CAVALIE et al. 1991; KLEUSS et al. 1991). The availability of the cloned 
cDNA of several Channel proteins and Channel regulators will facilitate 
understanding of the complexities of voltage-gated calcium Channels. 
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