5,370 research outputs found

    Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization

    Full text link
    [EN] Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Giuseppe Felici reports a relationship with S.I.T. Sordina IORT Technologies S.p.A. that includes: employment. We thank the professionals and facilities at the 3D printing and metrology department in the Mechanics Unit at IFIC. JV thanks I. Diaz for measuring the PLA density. We thank S.I.T. SORDINA IORT Tech-nologies SpA for providing the applicator used for testing the filter during the measurements. JV, FB, and JP would like to acknowledge the Spanish "Ministerio de Ciencia e Innovacion" (MCIN) grant PID2021-125096NB-I00 funded by MCIN/AEI/10.13039 and the "Generalitat Valenciana" (GVA) grant PROMETEO/2021/064.Oliver-Gil, S.; Vijande, J.; Tejedor-Aguilar, N.; Miró Herrero, R.; Rovira-Escutia, JJ.; Ballester, F.; Juste-Vidal, B.... (2023). Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization. Radiation Physics and Chemistry. 212. https://doi.org/10.1016/j.radphyschem.2023.11110221

    Climate drives community-wide divergence within species over a limited spatial scale: evidence from an oceanic island

    Get PDF
    Geographic isolation substantially contributes to species endemism on oceanic islands when speciation involves the colonisation of a new island. However, less is understood about the drivers of speciation within islands. What is lacking is a general understanding of the geographic scale of gene flow limitation within islands, and thus the spatial scale and drivers of geographical speciation within insular contexts. Using a community of beetle species, we show that when dispersal ability and climate tolerance are restricted, microclimatic variation over distances of only a few kilometres can maintain strong geographic isolation extending back several millions of years. Further to this, we demonstrate congruent diversification with gene flow across species, mediated by Quaternary climate oscillations that have facilitated a dynamic of isolation and secondary contact. The unprecedented scale of parallel species responses to a common environmental driver for evolutionary change has profound consequences for understanding past and future species responses to climate variation

    LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model

    Full text link
    In the quasi-inert Higgs doublet model, we study the LHC diphoton rate for a standard model-like Higgs boson and the top quark forward-backward asymmetry at Tevatron. Taking into account the constraints from the vacuum stability, unitarity, electroweak precision tests, flavor physics and the related experimental data of top quark, we find that compared with the standard model prediction, the diphoton rate of Higgs boson at LHC can be enhanced due to the light charged Higgs contributions, while the measurement of the top quark forward-backward asymmetry at Tevatron can be explained to within 1σ1\sigma due to the non-standard model neutral Higgs bosons contributions. Finally, the correlations between the two observables are discussed.Comment: 14 pages, 5 figues. Version to appear in JHEP, some references adde

    Current controversies in TNM for the radiological staging of rectal cancer and how to deal with them: results of a global online survey and multidisciplinary expert consensus

    Get PDF
    Objectives: To identify the main problem areas in the applicability of the current TNM staging system (8th ed.) for the radiological staging and reporting of rectal cancer and provide practice recommendations on how to handle them. Methods: A global case-based online survey was conducted including 41 image-based rectal cancer cases focusing on various items included in the TNM system. Cases reaching < 80% agreement among survey respondents were identified as problem areas and discussed among an international expert panel, including 5 radiologists, 6 colorectal surgeons, 4 radiation oncologists, and 3 pathologists. Results: Three hundred twenty-one respondents (from 32 countries) completed the survey. Sixteen problem areas were identified, related to cT staging in low-rectal cancers, definitions for cT4b and cM1a disease, definitions for mesorectal fascia (MRF) involvement, evaluation of lymph nodes versus tumor deposits, and staging of lateral lymph nodes. The expert panel recommended strategies on how to handle these, including advice on cT-stage categorization in case of involvement of different layers of the anal canal, specifications on which structures to include in the definition of cT4b disease, how to define MRF involvement by the primary tumor and other tumor-bearing structures, how to differentiate and report lymph nodes and tumor deposits on MRI, and how to anatomically localize and stage lateral lymph nodes. Conclusions: The recommendations derived from this global survey and expert panel discussion may serve as a practice guide and support tool for radiologists (and other clinicians) involved in the staging of rectal cancer and may contribute to improved consistency in radiological staging and reporting. Key Points: • Via a case-based online survey (incl. 321 respondents from 32 countries), we identified 16 problem areas related to the applicability of the TNM staging system for the radiological staging and reporting of rectal cancer. • A multidisciplinary panel of experts recommended strategies on how to handle these problem areas, including advice on cT-stage categorization in case of involvement of different layers of the anal canal, specifications on which structures to include in the definition of cT4b disease, how to define mesorectal fascia involvement by the primary tumor and other tumor-bearing structures, how to differentiate and report lymph nodes and tumor deposits on MRI, and how to anatomically localize and stage lateral lymph nodes. • These recommendations may serve as a practice guide and support tool for radiologists (and other clinicians) involved in the staging of rectal cancer and may contribute to improved consistency in radiological staging and reporting

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Neutrino Masses and Mixing: Evidence and Implications

    Get PDF
    Measurements of various features of the fluxes of atmospheric and solar neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. We review the phenomenology of neutrino oscillations in vacuum and in matter. We present the existing evidence from solar and atmospheric neutrinos as well as the results from laboratory searches, including the final status of the LSND experiment. We describe the theoretical inputs that are used to interpret the experimental results in terms of neutrino oscillations. We derive the allowed ranges for the mass and mixing parameters in three frameworks: First, each set of observations is analyzed separately in a two-neutrino framework; Second, the data from solar and atmospheric neutrinos are analyzed in a three active neutrino framework; Third, the LSND results are added, and the status of accommodating all three signals in the framework of three active and one sterile light neutrinos is presented. We review the theoretical implications of these results: the existence of new physics, the estimate of the scale of this new physics and the lessons for grand unified theories, for supersymmetric models with R-parity violation, for models of extra dimensions and singlet fermions in the bulk, and for flavor models.Comment: Added note on the effects of KamLAND results. Two new figure

    Higgs production as a probe of anomalous top couplings

    Full text link
    The LHC may be currently seeing the first hints of the Higgs boson. The dominant production mode for the Higgs at the LHC involves a top-quark loop. An accurate measurement of Higgs production cross-sections and decay widths can thus be used to obtain limits on anomalous top couplings. We find that such an exercise could potentially yield constraints that are stronger than those derived from low-energy observables as well as direct bounds expected from the top pair-production process.Comment: Version published in JHE

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO
    corecore