1,536 research outputs found

    Physical properties of fullerene-containing Galactic planetary nebulae

    Get PDF
    We searched the Spitzer Space Telescope data archive for Galactic planetary nebulae (PNe), which show the characteristic 17.4 and 18.9 µm features due to C60, also known as buckminsterfullerene. Out of 338 objects with Spitzer/Infrared Spectrograph data, we found eleven C60-containing PNe, six of which (Hen2-68, IC2501, K3-62, M1-6, M1-9 and SaSt2-3) are new detections, not known to contain C60 prior to this work. The strongest 17.4 and 18.9 µm C60 features are seen in Tc1 and SaSt2-3, and these two sources also prominently show the C60 resonances at 7.0 and 8.5 µm. In the other nine sources, the 7.0 and 8.5 µm features due to C60 are much weaker. We analysed the spectra, along with ancillary data, using the photoionization code CLOUDY to establish the atomic line fluxes, and determine the properties of the radiation field, as set by the effective temperature of the central star. In addition, we measured the infrared spectral features due to dust grains. We find that the polycyclic aromatic hydrocarbon (PAH) profile over 6–9 µm in these C60-bearing carbon-rich PNe is of the more chemically processed class A. The intensity ratio of 3.3 to 11.3 µm PAH indicates that the number of C-atoms per PAH in C60-containing PNe is small compared to that in non-C60 PNe. The Spitzer spectra also show broad dust features around 11 and 30 µm. Analysis of the 30 µm feature shows that it is strongly correlated with the continuum, and we propose that a single carbon-based carrier is responsible for both the continuum and the feature. The strength of the 11 µm feature is correlated to the temperature of the dust, suggesting that it is at least partially due to a solid-state carrier. The chemical abundances of C60-containing PNe can be explained by asymptotic giant branch nucleosynthesis models for initially 1.5–2.5 M⊙ stars with Z = 0.004. We plotted the locations of C60-containing PNe on a face-on map of the Milky Way and we found that most of these PNe are outside the solar circle, consistent with low metallicity values. Their metallicity suggests that the progenitors are an older population

    Mitochondrial echoes of first settlement and genetic continuity in El Salvador

    Get PDF
    Background: From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador. Methodology/Principal Findings: We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ~90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas. Conclusions/Significance: As a whole, the results are compatible with the hypothesis that today's A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (~5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade

    Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence

    Get PDF
    Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic acid (JA) hormone signaling outputs. A previously unstudied Pseudomonas syringae (Psy) type III effector, HopBB1, interacts with TCP14 and targets it to the SCFCOI1 degradation complex by connecting it to the JA signaling repressor JAZ3. Consequently, HopBB1 de-represses the TCP14-regulated subset of JA response genes and promotes pathogen virulence. Thus, HopBB1 fine-tunes host phytohormone crosstalk by precisely manipulating part of the JA regulon to avoid pleiotropic host responses while promoting pathogen proliferation

    The starburst-AGN connection in the merger galaxy Mrk 938: an infrared and X-ray view

    Get PDF
    Mrk938 is a luminous infrared galaxy in the local Universe believed to be the remnant of a galaxy merger. It shows a Seyfert 2 nucleus and intense star formation according to optical spectroscopic observations. We have studied this galaxy using new Herschel far-IR imaging data in addition to archival X-ray, UV, optical, near-IR and mid-IR data. Mid- and far-IR data are crucial to characterise the starburst contribution, allowing us to shed new light on its nature and to study the coexistence of AGN and starburst activity in the local Universe. The decomposition of the mid-IR Spitzer spectrum shows that the AGN bolometric contribution to the mid-IR and total infrared luminosity is small (Lbol(AGN)/LIR~0.02), which agrees with previous estimations. We have characterised the physical nature of its strong infrared emission and constrained it to a relatively compact emitting region of <2kpc. It is in this obscured region where most of the current star formation activity is taking place as expected for LIRGs. We have used Herschel imaging data for the first time to constrain the cold dust emission with unprecedented accuracy. We have fitted the integrated far-IR spectral energy distribution and derived the properties of the dust, obtaining a dust mass of 3x10^7Msun. The far-IR is dominated by emission at 35K, consistent with dust heated by the on-going star formation activity.Comment: 12 pages, 6 figures, 4 tables, accepted for publication in MNRA

    Spitzer IRS Spectral Mapping of the Toomre Sequence: Spatial Variations of PAH, Gas, and Dust Properties in Nearby Major Mergers

    Get PDF
    We have mapped the key mid-IR diagnostics in eight major merger systems of the Toomre Sequence (NGC4676, NGC7592, NGC6621, NGC2623, NGC6240, NGC520, NGC3921, and NGC7252) using the Spitzer Infrared Spectrograph (IRS). With these maps, we explore the variation of the ionized-gas, PAH, and warm-gas (H_2) properties across the sequence and within the galaxies. While the global PAH interband strength and ionized gas flux ratios ([Ne III]/[Ne II]) are similar to those of normal star forming galaxies, the distribution of the spatially resolved PAH and fine structure line flux ratios is significant different from one system to the other. Rather than a constant H_2/PAH flux ratio, we find that the relation between the H_2 and PAH fluxes is characterized by a power law with a roughly constant exponent (0.61+/-0.05) over all merger components and spatial scales. While following the same power law on local scales, three galaxies have a factor of ten larger integrated (i.e. global) H_2/PAH flux ratio than the rest of the sample, even larger than what it is in most nearby AGNs. These findings suggest a common dominant excitation mechanism for H_2 emission over a large range of global H_2/PAH flux ratios in major mergers. Early merger systems show a different distribution between the cold (CO J=1-0) and warm (H_2) molecular gas component, which is likely due to the merger interaction. Strong evidence for buried star formation in the overlap region of the merging galaxies is found in two merger systems (NGC6621 and NGC7592) as seen in the PAH, [Ne II], [Ne III], and warm gas line emission, but with no apparent corresponding CO (J=1-0) emission. Our findings also demonstrate that the variations of the physical conditions within a merger are much larger than any systematic trends along the Toomre Sequence.Comment: 35 pages, accepted for publication in ApJ

    African-American mitochondrial DNAs often match mtDNAs found in multiple African ethnic groups

    Get PDF
    BACKGROUND: Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample. RESULTS: When two independent African-American samples were analyzed, more than half of the sampled HVS-I mtDNA haplotypes exactly matched common haplotypes that were shared among multiple African ethnic groups. Another 40% did not match any sequence in the database, and fewer than 10% were an exact match to a sequence from a single African ethnic group. Differences in the regional distribution of haplotypes were observed in the African database, and the African-American haplotypes were more likely to match haplotypes found in ethnic groups from West or West Central Africa than those found in eastern or southern Africa. Fewer than 14% of the African-American mtDNA sequences matched sequences from only West Africa or only West Central Africa. CONCLUSION: Our database of sub-Saharan mtDNA sequences includes the most common haplotypes that are shared among ethnic groups from multiple regions of Africa. These common haplotypes have been found in half of all sub-Saharan Africans. More than 60% of the remaining haplotypes differ from the common haplotypes at a single nucleotide position in the HVS-I region, and they are likely to occur at varying frequencies within sub-Saharan Africa. However, the finding that 40% of the African-American mtDNAs analyzed had no match in the database indicates that only a small fraction of the total number of African haplotypes has been identified. In addition, the finding that fewer than 10% of African-American mtDNAs matched mtDNA sequences from a single African region suggests that few African Americans might be able to trace their mtDNA lineages to a particular region of Africa, and even fewer will be able to trace their mtDNA to a single ethnic group. However, no firm conclusions should be made until a much larger database is available. It is clear, however, that when identical mtDNA haplotypes are shared among many ethnic groups from different parts of Africa, it is impossible to determine which single ethnic group was the source of a particular maternal ancestor based on the mtDNA sequence

    New Population and Phylogenetic Features of the Internal Variation within Mitochondrial DNA Macro-Haplogroup R0

    Get PDF
    BACKGROUND: R0 embraces the most common mitochondrial DNA (mtDNA) lineage in West Eurasia, namely, haplogroup H (approximately 40%). R0 sub-lineages are badly defined in the control region and therefore, the analysis of diagnostic coding region polymorphisms is needed in order to gain resolution in population and medical studies. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the first hypervariable segment (HVS-I) of 518 individuals from different North Iberian regions. The mtDNAs belonging to R0 (approximately 57%) were further genotyped for a set of 71 coding region SNPs characterizing major and minor branches of R0. We found that the North Iberian Peninsula shows moderate levels of population stratification; for instance, haplogroup V reaches the highest frequency in Cantabria (north-central Iberia), but lower in Galicia (northwest Iberia) and Catalonia (northeast Iberia). When compared to other European and Middle East populations, haplogroups H1, H3 and H5a show frequency peaks in the Franco-Cantabrian region, declining from West towards the East and South Europe. In addition, we have characterized, by way of complete genome sequencing, a new autochthonous clade of haplogroup H in the Basque country, named H2a5. Its coalescence age, 15.6+/-8 thousand years ago (kya), dates to the period immediately after the Last Glacial Maximum (LGM). CONCLUSIONS/SIGNIFICANCE: In contrast to other H lineages that experienced re-expansion outside the Franco-Cantabrian refuge after the LGM (e.g. H1 and H3), H2a5 most likely remained confined to this area till present days

    High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia

    Get PDF
    BACKGROUND: Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. METHODOLOGY/PRINCIPAL FINDINGS: The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. CONCLUSIONS/SIGNIFICANCE: Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis

    Design of synthetic bacterial communities for predictable plant phenotypes

    Get PDF
    Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant-bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation-responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communitie

    HERUS: the far-IR/submm spectral energy distributions of local ULIRGs and photometric atlas

    Get PDF
    We present the Herschel-SPIRE photometric atlas for a complete flux limited sample of 43 local ultraluminous infrared galaxies (ULIRGs), selected at 60 μm by IRAS, as part of the HERschel ULIRG Survey (HERUS). Photometry observations were obtained using the SPIRE instrument at 250, 350, and 500 μm. We describe these observations, present the results, and combine the new observations with data from IRAS to examine the far-infrared spectral energy distributions (SEDs) of these sources. We fit the observed SEDs of HERUS objects with a simple parametrized modified blackbody model, where temperature and emissivity β are free parameters. We compare the fitted values to those of non-ULIRG local galaxies, and find, in agreement with earlier results, that HERUS ULIRGs have warmer dust (median temperature T = 37.9 ± 4.7 K compared to 21.3 ± 3.4 K) but a similar β distribution (median β = 1.7 compared to 1.8) to the Herschel reference sample (HRS, Cortese et al. 2014) galaxies. Dust masses are found to be in the range of 107.5–109 M⊙, significantly higher than that of HRS sources. We compare our results for local ULIRGs with higher redshift samples selected at 250 and 850 μm. These latter sources generally have cooler dust and/or redder 100-to-250  μm colours than our 60 μm-selected ULIRGs. We show that this difference may in part be the result of the sources being selected at different wavelengths rather than being a simple indication of rapid evolution in the properties of the population
    corecore