141 research outputs found

    Molecular Portrait of Clear Cell Renal Cell Carcinoma: An Integrative Analysis of Gene Expression and Genomic Copy Number Profiling

    Get PDF
    Renal cell carcinoma (RCC) incidence accounts for about 3 to 10 cases per 100,000 individuals with a predilection for adult males over 60 year old (1.6:1 male/female ratio) (Chow, 2010; Nese, 2009). In Europe, about 60,000 individuals are affected by RCC every year, with a mortality rate of about 18,000 subjects and an incidence rate for all stages steadily rising over the last three decades. Although inherited forms occur in a number of familial cancer syndromes, as the well-known von Hippel-Lindau (VHL) syndrome, RCC is commonly sporadic (Cohen & McGovern, 2005; Kaelin, 2007) and, as recently highlighted by the National Cancer Institute (NCI), influenced by the interplay between exposure to environmental risk factors and genetic susceptibility of exposed individuals (Chow et al., 2010). Being poorly symptomatic in early phases, many cases become clinically detectable only when already advanced and, as such, therapy-resistant (Motzer, 2011). Based on histology, RCC can be classified into several subtypes, i.e., clear cell (80% of cases), papillary (10%), chromophobe (5%) and oncocytoma (5%), each one characterized by specific histo- pathological features, malignant potential and clinical outcome (Cohen & McGovern, 2005). Patient stratification is normally achieved using prognostic algorithms and nomograms based on multiple clinico-pathological factors such as TNM stage, Fuhrman nuclear grade, tumor size, performance status, necrosis and other hematological indices (Flanigan et al., 2011), although the most efficient predictors of survival and recurrence are based on nuclear grade alone (Nese et al., 2009). As recently reviewed by Brannon et al. (Brannon & Rathmell, 2010), a finer RCC subtype classification could be obtained exploiting the vast amount of genomic and transcriptional data that have been presented in numerous studies. For instance, several authors proposed a molecular classification of RCC based on differential gene expression profiles, with any subtype characterized by the activation of distinct gene sets (Brannon, 2010; Furge, 2004; Skubitz, 2006; Su\u308ltmann, 2005; Zhang, 2008), while others identified RCC-specific biomarkers (e.g. CA9, ki67, VEGF proteins, phosphorylated AKT, PTEN, HIF-1). Lately, it has been reported that microRNAs, a small class of non coding RNA molecules, could contribute to RCC development at different levels and may represent a new group of potential tumor biomarkers (Redova et al., 2011). Despite the numerous efforts in dissecting the molecular features of RCC through functional genomics, not a single transcriptional signature or biomarker has gained approval for clinical application yet (Arsanious, 2009; Eichelberg, 2009; Lam, 2007; Yin-Goen, 2006), so that the identification of novel molecular markers to improve early diagnosis and prognostic prediction and of candidate targets to develop new therapeutic approaches remains of primary importance for this pathology

    Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues.</p> <p>Methods</p> <p>We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation).</p> <p>Results</p> <p>A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed.</p> <p>Conclusions</p> <p>ccRCC primary cultures are a reliable <it>in vitro </it>model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches aimed to study genes or pathways involved in ccRCC etiopathogenesis and to identify novel clinical markers or therapeutic targets. Moreover, SNP array technology proved to be a powerful tool to better define the cell composition and homogeneity of RCC primary cultures.</p

    Integrated Genomic, Functional, and Prognostic Characterization of Atypical Chronic Myeloid Leukemia

    Get PDF
    Atypical chronic myeloid leukemia (aCML) is a BCR-ABL1-negative clonal disorder, which belongs to the myelodysplastic/myeloproliferative group. This disease is characterized by recurrent somatic mutations in SETBP1, ASXL1 and ETNK1 genes, as well as high genetic heterogeneity, thus posing a great therapeutic challenge. To provide a comprehensive genomic characterization of aCML we applied a high-throughput sequencing strategy to 43 aCML samples, including both whole-exome and RNA-sequencing data. Our dataset identifies ASXL1, SETBP1, and ETNK1 as the most frequently mutated genes with a total of 43.2%, 29.7 and 16.2%, respectively. We characterized the clonal architecture of 7 aCML patients by means of colony assays and targeted resequencing. The results indicate that ETNK1 variants occur early in the clonal evolution history of aCML, while SETBP1 mutations often represent a late event. The presence of actionable mutations conferred both ex vivo and in vivo sensitivity to specific inhibitors with evidence of strong in vitro synergism in case of multiple targeting. In one patient, a clinical response was obtained. Stratification based on RNA-sequencing identified two different populations in terms of overall survival, and differential gene expression analysis identified 38 significantly overexpressed genes in the worse outcome group. Three genes correctly classified patients for overall survival

    Altered Insulin Receptor Signalling and β-Cell Cycle Dynamics in Type 2 Diabetes Mellitus

    Get PDF
    Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells – which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM

    Examining wheat yield sensitivity to temperature and precipitation changes for a large ensemble of crop models using impact response surfaces

    Get PDF
    Impact response surfaces (IRSs) depict the response of an impact variable to changes in two explanatory variables as a plotted surface. Here, IRSs of spring and winter wheat yields were constructed from a 25-member ensemble of process-based crop simulation models. Twenty-one models were calibrated by different groups using a common set of calibration data, with calibrations applied independently to the same models in three cases. The sensitivity of modelled yield to changes in temperature and precipitation was tested by systematically modifying values of 1981-2010 baseline weather data to span the range of 19 changes projected for the late 21st century at three locations in Europe

    Mitochondrial DNA Backgrounds Might Modulate Diabetes Complications Rather than T2DM as a Whole

    Get PDF
    Mitochondrial dysfunction has been implicated in rare and common forms of type 2 diabetes (T2DM). Additionally, rare mitochondrial DNA (mtDNA) mutations have been shown to be causal for T2DM pathogenesis. So far, many studies have investigated the possibility that mtDNA variation might affect the risk of T2DM, however, when found, haplogroup association has been rarely replicated, even in related populations, possibly due to an inadequate level of haplogroup resolution. Effects of mtDNA variation on diabetes complications have also been proposed. However, additional studies evaluating the mitochondrial role on both T2DM and related complications are badly needed. To test the hypothesis of a mitochondrial genome effect on diabetes and its complications, we genotyped the mtDNAs of 466 T2DM patients and 438 controls from a regional population of central Italy (Marche). Based on the most updated mtDNA phylogeny, all 904 samples were classified into 57 different mitochondrial sub-haplogroups, thus reaching an unprecedented level of resolution. We then evaluated whether the susceptibility of developing T2DM or its complications differed among the identified haplogroups, considering also the potential effects of phenotypical and clinical variables. MtDNA backgrounds, even when based on a refined haplogroup classification, do not appear to play a role in developing T2DM despite a possible protective effect for the common European haplogroup H1, which harbors the G3010A transition in the MTRNR2 gene. In contrast, our data indicate that different mitochondrial haplogroups are significantly associated with an increased risk of specific diabetes complications: H (the most frequent European haplogroup) with retinopathy, H3 with neuropathy, U3 with nephropathy, and V with renal failure

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at s √ =8  TeV with the ATLAS detector

    Get PDF
    Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-pT leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3  fb−1 from pp collisions at a center-of-mass energy s√=8  TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the tt¯ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: AℓℓC based on the selected leptons and Att¯C based on the reconstructed tt¯ final state. The inclusive asymmetries are measured in the full phase space to be AℓℓC=0.008±0.006 and Att¯C=0.021±0.016, which are in agreement with the Standard Model predictions of AℓℓC=0.0064±0.0003 and Att¯C=0.0111±0.0004

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics
    corecore