27 research outputs found

    Caracterización de pacientes con úlceras pépticas negativas a Helicobacter pylori

    Get PDF
    Fundamento: la proporción de úlceras negativas a Helicobacter pylori está aumentando. El tratamiento con antinflamatorios no esteroideos y otras drogas ulcerogénicas juega un papel importante. Objetivo: caracterizar pacientes con úlcera péptica negativa a Helicobacter pylori.Métodos: estudio de serie de casos en pacientes atendidos en el Servicio de Gastroenterología del Hospital Hermanos Ameijeiras, en el año 2009. Se estudiaron variables demográficas, epidemiológicas, clínicas, endoscópicas e histológicas. Se analizó media y desviación estándar; se utilizaron las pruebas t-Student, Chi-cuadrado y regresión logística.Resultados: se diagnosticaron 269 úlceras gástricas, 239 duodenales y 41 combinadas; 115 casos negativos a Helicobacter pylori y 434 positivos. Los antinflamatorios no esteroideos se asociaron en un 33, 9 % a los casos sin H. pilory y 22, 8 % a los positivos. El síndrome ulceroso se presentó en 47 % y 45 % en ambos grupos. Se localizaron en el bulbo todas las úlceras duodenales negativas a H. pilory, y 96, 6 % de las positivas. El antro fue la localización gástrica más frecuente (92, 3 % negativos; 90, 5 % positivos). En el duodeno predominaron las úlceras múltiples negativas y en el estómago las dobles negativas. La gastritis antral predominó (73, 0 % H. pilory negativos), el grado de actividad fue mayor en los positivos (97, 0 %) y la metaplasia intestinal fue similar para ambos grupos. Conclusiones: en pacientes con úlcera gastroduodenal negativa a H. pilory debe tenerse en consideración a los antinflamatorios no esteroideos como uno de los principales factores asociados a esta entidad.</p

    Deletion of iRhom2 protects against diet-inducedobesity by increasing thermogenesis

    Get PDF
    Objective:Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energydissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Herewe evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in thepathophysiology of metabolic syndrome.Methods:We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared theirmetabolic phenotypes. We also carried outex vivoassays with primary and immortalized mouse brown adipocytes to establish the autonomy ofthe effect of loss of iRhom2 on thermogenesis and respiration.Results:Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improvedinsulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beigeadipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced ther-mogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak.Conclusion:Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasisduring metabolic diseaseWellcome Trust strategic award (100574/Z/12/Z) and MRC MDU (MC_UU_12012/

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Population and fertility by age and sex for 195 countries and territories, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. METHODS: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10-54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10-14 years and 50-54 years was estimated from data on fertility in women aged 15-19 years and 45-49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories

    Treatment of female and male inpatient crack users: a qualitative study Tratamento de mulheres e homens usuários de crack internados: um estudo qualitativo

    No full text
    OBJECTIVE: To map treatment trajectories in a sample of male and female crack users through their narratives about the course of treatment seeking and their attempts to access health care services in Brazil. METHODS: Qualitative study of a purposive sample (five female and nine male hospitalized crack users) using semi-structured interviews. The interviews were transcribed and data explored using content analysis. RESULTS: Respondents reported difficulties getting access to hospitalization, relapse after discharge, and abandonment of treatment. There seems to be a peculiar model of behavior for women and men while dealing with craving for crack: while women got involved with prostitution and consequently became infected with HIV, every men of the sample reported criminal involvement. CONCLUSIONS: The relationship between relapse and a social environment conducive to consumption, associated with belief or disbelief in spiritual support, prostitution, and the legal complications arising from the use of crack, are relevant issues and should be taken into consideration in the development of preventive actions aimed at this specific population.OBJETIVO: Mapear as trajetórias de tratamento em uma amostra de homens e mulheres usuários de crack, através de suas narrativas acerca do percurso de busca por tratamento e suas tentativas de ter acesso ao sistema de saúde brasileiro. MÉTODO: Estudo qualitativo de uma amostra intencional (cinco mulheres e nove homens usuários de crack internados) utilizando entrevistas semiestruturadas. As entrevistas foram transcritas e os dados explorados utilizando-se a técnica de análise de conteúdo. RESULTADOS: Os entrevistados referiram dificuldades em obter acesso à internação, recaídas após a alta e abandono do tratamento. Parece existir um modelo de comportamento peculiar às mulheres e aos homens para lidar com a fissura pelo crack: enquanto as mulheres se prostituíram e, consequentemente, infectaram-se pelo HIV, todos os homens da amostra referiram envolvimento com o crime. CONCLUSÕES: As relações entre recaída e um ambiente social propício ao consumo, associadas a crença ou descrença em um auxílio espiritual, prostituição e às complicações legais decorrentes do uso de crack, são pontos relevantes e devem ser levados em consideração no desenvolvimento de ações preventivas voltadas a essa população específica
    corecore