84 research outputs found

    ECOS REVOLUCIONARIOS EN LA PATAGONIA

    Get PDF
    La RevoluciĂłn de Mayo es considerada el acontecimiento que marca el comienzo de la construcciĂłn de nuestro paĂ­s como tal. Sin embargo, debemos tener en cuenta que no ha significado lo mismo para todas las provincias que hoy lo conforman ni para todos sus habitantes, puesto que sus realidades pasadas han sido totalmente disĂ­miles. Este artĂ­culo propone algunas perspectivas para el debate en torno a dos momentos importantes de la historia argentina, la RevoluciĂłn de Mayo y el primer Centenario, y su significaciĂłn en la historia de la Patagoni

    Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    Get PDF
    Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP), plasma malondialdehyde and total antioxidative capacity (TAC), as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59) and a control group of neurologically normal subjects (n = 29), attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery), while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol) of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC) of patients. In this context, the subset of subjects exhibiting cognitive impairment were divided into two subgroups according with their Global Dementia Scale performance: a subgroup with mild AD and a subgroup with moderate to severe AD. Significant differences in AOC were found between subgroups. The different correlations between cognitive impairment of subgroups of subjects with the oxidative stress profile are discussed in the context of AD pathogenesis

    Non-invasive phrenic nerve stimulation to avoid ventilator-induced diaphragm dysfunction in critical care

    Get PDF
    Background: Diaphragm muscle atrophy during mechanical ventilation begins within 24 h and progresses rapidly with significant clinical consequences. Electrical stimulation of the phrenic nerves using invasive electrodes has shown promise in maintaining diaphragm condition by inducing intermittent diaphragm muscle contraction. However, the widespread application of these methods may be limited by their risks as well as the technical and environmental requirements of placement and care. Non-invasive stimulation would offer a valuable alternative method to maintain diaphragm health while overcoming these limitations. Methods: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. Respiratory pressure and flow, diaphragm electromyography and mechanomyography, and ultrasound visualization were used to assess the diaphragmatic response to stimulation. The electrode positions and stimulation parameters were systematically varied in order to investigate the influence of these parameters on the ability to induce diaphragm contraction with non-invasive stimulation. Results: We demonstrate that non-invasive capture of the phrenic nerve is feasible using surface electrodes without the application of pressure, and characterize the stimulation parameters required to achieve therapeutic diaphragm contractions in healthy volunteers. We show that an optimal electrode position for phrenic nerve capture can be identified and that this position does not vary as head orientation is changed. The stimulation parameters required to produce a diaphragm response at this site are characterized and we show that burst stimulation above the activation threshold reliably produces diaphragm contractions sufficient to drive an inspired volume of over 600 ml, indicating the ability to produce significant diaphragmatic work using non-invasive stimulation. Conclusion: This opens the possibility of non-invasive systems, requiring minimal specialist skills to set up, for maintaining diaphragm function in the intensive care setting

    Improvement of endothelial function by Gunnera tinctoria extract with antioxidant properties

    Get PDF
    Indexación ScopusBackground: Gunnera tinctoria has been collected by Mapuche-Pewenche people for food and medicinal purposes. The high polyphenol content of methanolic extract from G. tinctoria leaves with chemical constituents such as ellagic acid and quercetin derivatives suggests its application to prevent endothelial dysfunction and oxidative stress. The aim of this study was to provide evidence of the protective effect of this extract on endothelial function by reducing oxidative stress induced by high d-glucose and H2O2, as well as by stimulating nitric oxide (NO) levels in human umbilical vein endothelial cells (HUVECs). Results: A methanolic extract with a high content of polyphenols (520 ± 30 mg gallic acid equivalents/g dry extract) was obtained from G. tinctoria leaves. Its main constituent was ellagic acid. The results of Ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays of the extract confirmed its antioxidant activity by inhibition pathway of radical species. The incubation of HUVECs with the extract decreased the apoptosis and reactive oxygen species (ROS) synthesis induced by high extracellular concentration of d-glucose or hydrogen peroxide. The extract increased endothelial NO levels and reduced vasoconstriction in human placental vessels. Conclusions: This study provides evidence about the antioxidant and endothelial protective properties of methanolic G. tinctoria leaf extract. The extract improves the availability of NO in HUVECs, inhibiting the production of ROS and vasoconstriction. © 2020, The Author(s).https://biolres.biomedcentral.com/articles/10.1186/s40659-020-00322-

    Methylglyoxal down-regulates the expression of cell cycle associated genes and activates the p53 pathway in human umbilical vein endothelial cells

    Get PDF
    Abstract Although methylglyoxal (MGO) has emerged as key mediator of diabetic microvascular complications, the influence of MGO on the vascular transcriptome has not thoroughly been assessed. Since diabetes is associated with low grade inflammation causing sustained nuclear factor-kappa B (NF-ÎșB) activation, the current study addressed 1) to what extent MGO changes the transcriptome of human umbilical vein endothelial cells (HUVECs) exposed to an inflammatory milieu, 2) what are the dominant pathways by which these changes occur and 3) to what extent is this affected by carnosine, a putative scavenger of MGO. Microarray analysis revealed that exposure of HUVECs to high MGO concentrations significantly changes gene expression, characterized by prominent down-regulation of cell cycle associated genes and up-regulation of heme oxygenase-1 (HO-1). KEGG-based pathway analysis identified six significantly enriched pathways of which the p53 pathway was the most affected. No significant enrichment of inflammatory pathways was found, yet, MGO did inhibit VCAM-1 expression in Western blot analysis. Carnosine significantly counteracted MGO-mediated changes in a subset of differentially expressed genes. Collectively, our results suggest that MGO initiates distinct transcriptional changes in cell cycle/apoptosis genes, which may explain MGO toxicity at high concentrations. MGO did not augment TNF-α induced inflammation

    Radiation of Extant Cetaceans Driven by Restructuring of the Oceans

    Get PDF
    The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36–34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18–16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans

    Investigating Population Genetic Structure in a Highly Mobile Marine Organism: The Minke Whale Balaenoptera acutorostrata acutorostrata in the North East Atlantic

    Get PDF
    Inferring the number of genetically distinct populations and their levels of connectivity is of key importance for the sustainable management and conservation of wildlife. This represents an extra challenge in the marine environment where there are few physical barriers to gene-flow, and populations may overlap in time and space. Several studies have investigated the population genetic structure within the North Atlantic minke whale with contrasting results. In order to address this issue, we analyzed ten microsatellite loci and 331 bp of the mitochondrial D-loop on 2990 whales sampled in the North East Atlantic in the period 2004 and 2007–2011. The primary findings were: (1) No spatial or temporal genetic differentiations were observed for either class of genetic marker. (2) mtDNA identified three distinct mitochondrial lineages without any underlying geographical pattern. (3) Nuclear markers showed evidence of a single panmictic population in the NE Atlantic according STRUCTURE's highest average likelihood found at K = 1. (4) When K = 2 was accepted, based on the Evanno's test, whales were divided into two more or less equally sized groups that showed significant genetic differentiation between them but without any sign of underlying geographic pattern. However, mtDNA for these individuals did not corroborate the differentiation. (5) In order to further evaluate the potential for cryptic structuring, a set of 100 in silico generated panmictic populations was examined using the same procedures as above showing genetic differentiation between two artificially divided groups, similar to the aforementioned observations. This demonstrates that clustering methods may spuriously reveal cryptic genetic structure. Based upon these data, we find no evidence to support the existence of spatial or cryptic population genetic structure of minke whales within the NE Atlantic. However, in order to conclusively evaluate population structure within this highly mobile species, more markers will be required

    Phylogenetic relationships in southern African Bryde's whales inferred from mitochondrial DNA : further support for subspecies delineation between the two allopatric populations

    Get PDF
    Bryde’s whales (Balaenoptera edeni) are medium-sized balaenopterids with tropical and subtropical distribution. There is confusion about the number of species, subspecies and populations of Bryde’s whale found globally. Two eco-types occur off South Africa, the inshore and offshore forms, but with unknown relationship between them. Using the mtDNA control region we investigated the phylogenetic relationship of these populations to each other and other Bryde’s whale populations. Skin, baleen and bone samples were collected from biopsy-sampled individuals, strandings and museum collections. 97 sequences of 674 bp (bp) length were compared with published sequences of Bryde’s whales (n = 6) and two similar species, Omura’s (B. omurai) and sei (B. borealis) whales (n = 3). We found eight haplotypes from the study samples: H1–H4 formed a distinct, sister clade to pelagic populations of Bryde’s whales (B. brydei) from the South Pacific, North Pacific and Eastern Indian Ocean. H5–H8 were included in the pelagic clade. H1–H4 represented samples from within the distributional range of the inshore form. Pairwise comparisons of the percentage of nucleotide differences between sequences revealed that inshore haplotypes differed from published sequences of B. edeni by 4.7–5.5% and from B. brydei by 1.8–2.1%. Ten fixed differences between inshore and offshore sequences supported 100% diagnosability as subspecies. Phylogenetic analyses grouped the South African populations within the Bryde’s-sei whale clade and excluded B. edeni. Our data, combined with morphological and ecological evidence from previous studies, support subspecific classification of both South African forms under B. brydei and complete separation from B. edeni.PostprintPeer reviewe

    Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    Get PDF
    ELC was supported while writing this paper by a EU Horizon 2020 Marie Slodowska Curie Fellowship, project BEHAVIOUR-CONNECT, by a Newton Fellowship from the Royal Society of London and Bayesian statistical training was supported by National Science Foundation (award DEB- 1145200). Laboratory analyses conducted by ELC were funded by a small grant from the British Ecological Society 5076 / 6118 and Bayesian analysis was supported by training from the National Science Foundation under Grant No. DEB-1145200. OEG was supported by the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Founding Council (grant reference HR09011). Genetic data from the South African right whale samples were generated by MB and PJP with the support of UC Berkeley, University of Stockholm and University of Groningen. Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit which is funded by a Wellcome Trust ISSF award.Understanding how dispersal and gene flow link geographically separated populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n=1,327) and nuclear markers (17 microsatellite loci, n=222) from major wintering grounds to investigate circumpolar population structure, historical demography, and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approach with microsatellite markers compared scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modeling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesis that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such oceanographic changes. These findings highlight the application of ABC approaches to infer connectivity in mobile species with complex population histories and currently low levels of differentiation.PostprintPeer reviewe
    • 

    corecore