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ABSTRACT  24 

Bryde’s whales (Balaenoptera edeni) are medium-sized balaenopterids with tropical and 25 

subtropical distribution.  There is confusion about the number of species, subspecies and 26 

populations of Bryde’s whale found globally. Two eco-types occur off South Africa, the inshore 27 

and offshore forms, but with unknown relationship between them. Using the mtDNA control region 28 

we investigated the phylogenetic relationship of these populations to each other and other Bryde’s 29 

whale populations.  Skin, baleen and bone samples were collected from biopsy-sampled 30 

individuals, strandings and museum collections. 97 sequences of 674 base pair (bp) length were 31 

compared with published sequences of Bryde’s whales (n=6) and two similar species, Omura’s 32 

(B.omurai) and sei (B.borealis) whales (n=3). We found eight haplotypes from the study samples: 33 

H1- H4 formed a distinct, sister clade to pelagic populations of Bryde’s whales (B.brydei) from the 34 

South Pacific, North Pacific and Eastern Indian Ocean. H5 - H8 were included in the pelagic clade. 35 

H1 – H4 represented samples from within the distributional range of the inshore form. Pairwise 36 

comparisons of the percentage of nucleotide differences between sequences revealed that inshore 37 

haplotypes differed from published sequences of B.edeni by 4.7-5.5% and from B.brydei by 1.8-38 

2.1%. Ten fixed differences between inshore and offshore sequences supported 100% 39 

diagnosability as subspecies. Phylogenetic analyses grouped the South African populations within 40 

the Bryde’s-sei whale clade and excluded B.edeni. Our data, combined with morphological and 41 

ecological evidence from previous studies, support subspecific classification of both South African 42 

forms under B.brydei and complete separation from B.edeni.   43 

 44 

Keywords: Bryde’s whale, Balaenoptera edeni, Balaenoptera brydei, Southern Africa, mtDNA 45 

control region, phylogenetics.  46 
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INTRODUCTION 47 

The Bryde’s whale (Balaenoptera edeni) is one of 14 currently accepted species of mysticete whale 48 

and one of eight recognised species in the family Balaenopteridae (Committee on Taxonomy, 49 

2017).  Consensus on the number of species and subspecies of Balaenoptera has not been agreed 50 

due to insufficient information (Bannister, 2002; Rice, 1998). The recent classification of Omura’s 51 

whale (Balaenoptera omurai) as a distinct species excluded from the sei-Bryde’s whale complex 52 

has clarified some of the confusion surrounding the taxonomy of medium-sized balaenopterid 53 

whales, which includes Bryde’s, sei and Omura’s whales (Wada et al. 2003; Sasaki et al.  2006; 54 

Cerchio et al. 2015). Bryde’s whales closely resemble sei whales in size and shape and the two 55 

species were often confused by commercial whalers, resulting in inaccurate catch statistics and an 56 

inability to estimate past population sizes (Best, 1977; Ohsumi, 1977; Kato, 2002; Yamada et al., 57 

2008). However, several unique morphological characteristics distinguish Bryde’s whales from 58 

other balaenopterids, most notably three prominent rostral ridges that extend from the tip of the 59 

rostrum to anterior to the blowholes (Omura, 1962; Best, 1977; Kato, 2002).  Bryde’s whales are 60 

found in tropical and temperate waters and have been recorded in the North and South Pacific, 61 

Indian, and Atlantic Oceans, approximately between 40o N and 40o S (Kato, 2002). 62 

 63 

Since they were first described at the end of the 19th century Bryde’s whales have often been 64 

referred to as ‘little known’, with much confusion over their taxonomic position and the global 65 

number and distribution of populations. B.edeni was first described by Anderson in 1878 from a 66 

stranded specimen in Burma and was named Eden’s whale, after Sir Ashley Eden, the British High 67 

Commissioner to Burma at the time.  In 1912, during a visit to South Africa, Ørjan Olsen described 68 

a new species of mysticete whale, which had previously been confused with the sei whale.  Olsen 69 

named this new species Balaenoptera brydei after Johan Bryde, the Norwegian consul to South 70 

Africa, who set up the first whaling station in Durban (Kato, 2002).  B.edeni and B.brydei were 71 
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subsequently synonymised based on skeletal comparisons (Junge, 1950). It was later agreed they 72 

were conspecific (Junge, 1950; Best, 1960), which led to the use of B.edeni as the specific name 73 

and Bryde’s whale the popular name.  Recent findings suggest that this synonymization was 74 

premature and that there are a number of geographic, morphological, osteological, behavioural and 75 

genetic differences amongst the various populations of Bryde’s whales worldwide that may warrant 76 

subspecies or species designations (Omura, 1981; Best, 1977; Perrin et al., 1996; Pastene et al., 77 

1997; Yoshida and Kato, 1999; Wada et al. 2003; Sasaki et al. 2005,2006; Kanda et al. 2007; 78 

Kershaw et al. 2013; Rosel and Wilcox, 2014; Luksenburg, 2015).   79 

 80 

Despite the growing number of studies on the topic, Bryde’s whale taxonomy remains unresolved 81 

and several publications recommend that molecular studies should be combined with knowledge 82 

of the external morphology and ecology of each regional population before consensus is reached 83 

on the number of species, subspecies and their respective nomenclature (Bannister 2002, Rice 1998, 84 

Yamada et al. 2008). It is generally accepted that at least two species exist (B.edeni Anderson, 1878 85 

and B.brydei Olsen, 1913), however a type specimen for B.brydei was never defined and the genetic 86 

identity of the B.edeni holotype (Anderson, 1878) has not been verified. Therefore, all Bryde’s 87 

whales currently remain classified as a single species, Balaenoptera edeni, by the Society for 88 

Marine Mammalogy (Committee on Taxonomy, 2011, 2014, 2017). Reference was made, but not 89 

listed, to possible subspecific level distinction between small-form coastal Bryde’s whales of the 90 

western Pacific and Indian oceans (B.edeni) and the larger, globally distributed oceanic form 91 

(B.brydei) (Committee on Taxonomy, 2011).  In 2014, the Committee updated the listing of these 92 

provisional subspecies to B.edeni edeni and B.edeni brydei to which the small-coastal form and 93 

larger, oceanic form have respectively been referred (as in Kershaw et al. 2013 and Rosel and 94 

Wilcox, 2014). This provisional nomenclature may not be suitable for all geographic locations and 95 

the possibility that B.edeni and B.brydei are  separate species, with subspecies level separation 96 

within each of them, should be explored further.  97 
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 98 

To complicate matters further, Best’s (1977) description of two allopatric forms of Bryde’s whale 99 

off South Africa has led to the realisation that Olsen’s (1913) description of B.brydei was not 100 

correctly specified and included features from both the inshore and offshore forms (Best 2001; 101 

Kanda et al. 2007; Yamada et al. 2008). Table 1 summarises the differences in body size, scarring, 102 

reproductive cycles, diet, migrations, and a lack of distributional overlap between the two ecotypes 103 

(Best 1977). Contrary to the provisional subspecies designation of B.edeni edeni and B.edeni brydei 104 

(Committee on Taxonomy 2017), here we propose subspecific level separation  of the inshore and 105 

offshore South African ecotypes under B.brydei and their complete separation from B.edeni edeni.  106 

 107 

According to Taylor et al. (2017), a subspecies can be defined as “… a population, or collection of 108 

populations, that appears to be a separately evolving lineage with discontinuities resulting from 109 

geography, ecological specialisation, or other forces that restrict gene flow to the point that the 110 

population or collection of populations is diagnosably distinct”. It is therefore necessary to base 111 

subspecies classification on proven genetic differences between suspected subspecies in the 112 

Bryde’s-sei whale complex using the diagnosable criteria set out in Archer et al. (2017). 113 

   114 

Previous studies using the complete mitochondrial DNA (mtDNA) control region (901bp) found 115 

that the number of nucleotide differences between B. edeni (coastal Japan) and B. brydei (pelagic 116 

North Pacific) was greater than that between B. brydei and the sei whale (B. borealis) (Wada et al. 117 

2003). The same study also separated B. edeni from the borealis/brydei group. This was further 118 

supported in a later study using complete mtDNA sequences and short interspersed nuclear 119 

elements (SINE) insertion patterns (Sasaki et al. 2006).   120 

 121 

The effective population size (Ne) of the inshore population was estimated at 582 (+- 184) for the 122 

entire population in 1982 (Best et al 1984) and between 158 (SE = 17) and 248 (SE = 93) for the 123 
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eastern section of their range thirty years later (Penry 2010). Survey design and spatial limitations 124 

to data collection considered, the population is small, certainly less than 1000 individuals.  The 125 

offshore (SE Atlantic) population has never been assessed and therefore the estimated Ne is not 126 

available. 127 

 128 
Insert Table 1. 129 

Within the southern African sub-region, a third population similar in body size to the South African 130 

inshore form, but differing in prey type, was found in the south west Indian Ocean (SWIO), south 131 

and east of Madagascar (Fig 1, Best 2001).  Available information suggests that the distribution of 132 

this latter population does not extend as far south as Durban, South Africa (Fig. 1) and is likely to 133 

be geographically isolated from the South African populations (Best 2001).  The degree of genetic 134 

differentiation between the three putative populations is needed, however molecular data is lacking, 135 

with only one mtDNA sequence for a South African Bryde’s whale available prior to this study 136 

((Genbank X72196) Árnason and Best 1991).  137 

Insert Figure 1 138 

The aims of this study were to determine the molecular taxonomic position of southern African 139 

Bryde’s whales in the Bryde’s-sei whale complex, to determine the degree of genetic separation 140 

between the two ecotypes off South Africa, and to identify whether mtDNA control region 141 

sequences position the inshore form with B. edeni or B. brydei. This would enable the determination 142 

of subspecies classification in southern African waters. The molecular identity of extra-limital 143 

samples of Bryde’s whales from Namibia and the south western Indian Ocean (Fig. 2) is discussed 144 

in relation to the known distributional limits of the South African inshore population.  145 

 146 

Hereafter the South African inshore population will be referred to as ‘inshore’ and the SE Atlantic 147 

pelagic population as ‘offshore’. Although the use of the name B.brydei has not been formally 148 



7 

 

accepted, here we use it to refer to the larger, offshore or pelagic form of Bryde’s whales in several 149 

different geographic regions.  150 

 151 

METHODS 152 

Samples from 111 Bryde’s whales were available for this study. These included skin biopsies from 153 

free-ranging animals (n=78), soft tissue from stranded animals (n=23), and bone (n=5) and baleen 154 

(n=5) from museum collections (Fig 2A). One biopsy from the NE Atlantic (#35) and one from the 155 

SWIO (#36), east of the Madagascar Plateau, (28.4o S, 48.2o E) were collected during delivery of 156 

the Research Vessel Whale Song (RVWS) from the Mediterranean to Australia (Jenner and Jenner 157 

2011) (Fig. 2B).   158 

 159 

Insert Figure 2 160 

A summary of the samples used in this study is given in Table 2.  161 

 162 
Insert Table 2 163 

 164 

Biopsy samples were collected using a compound crossbow and modified biopsy darts (n=76 165 

samples) or a Larsen gun (Larsen, 1998) on loan from the International Whaling Commission 166 

(IWC) (n=2 samples). Biopsy tips were sterilized in 5% hydrogen peroxide prior to use. Thirty-167 

three sub-samples of Bryde’s whale tissue specimens (skin, bone, baleen) were obtained from the 168 

Port Elizabeth (PEM) and Iziko South African (ISAM) museums, the Department of Environmental 169 

Affairs (DEA) and the Namibian Dolphin Project (NDP). One of these samples (#11) was from the 170 

same individual analysed by Árnason and Best (1991), (Genbank Accession X72196). The origin 171 

of samples #37 and #38 is unclear; both are thought to originate from the SE Atlantic (offshore) 172 

population based on information associated with the samples on where and when they were 173 

collected (Appendix 2). The two samples from Namibia collected by the Namibian Dolphin Project 174 
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(NDP) were from a dead stranded adult (#43) and a live stranded juvenile (#44). The museum 175 

skeletal and baleen remains were cleaned and prepared prior to and during drilling to reduce the 176 

possibility of contamination (Pichler et al. 2001).  177 

 178 

Samples were processed and sequenced over a period of c. 5 years in different laboratories and 179 

amplification conditions, equipment, primers and sequencing methods varied slightly between 180 

laboratories. DNA was extracted from skin and muscle tissue using either the Puregene isolation 181 

method (Centra systems) or the Qiagen™ DNeasy Blood and Tissue kit. For samples with a low 182 

yield of DNA, the Invisorb® Forensic kit 1 or the QIAampTM DNA microkit was used.  We 183 

followed the protocol for each kit for the extraction of animal blood and tissue. Some specimens 184 

also required secondary cleaning of the extracted DNA using phenol-chloroform (Sambrook et al. 185 

1989).  186 

 187 

DNA extraction from bone and baleen samples were conducted in a sterile LaminAir flow cabinet 188 

isolated from the main laboratory. The flow cabinet, equipment and solutions were exposed to ultra 189 

violet (UV) light between individual extractions to prevent cross-contamination. Bone drillings 190 

were manually pulverised into a fine powder and DNA extracted following the protocol for ‘ancient 191 

bones’ set out according to the specifications of the Invisorb® Forensic kit 1. The pre-treatment and 192 

extraction procedures for baleen followed those used in Rosenbaum et al. (1997). After the DNA 193 

was re-suspended in ultrapure Milli-Q water, the concentration was measured on a Nanodrop (ND-194 

1000 Spectrophotometer, Thermo Fisher Scientific, USA) and diluted to 20 ng DNA/μl. The primer 195 

pairs M13DLp1.5 and Dlp8 G; (Dalebout et al. 2005) and ProL-He and DLH-He (Seddon et al. 196 

2001) were used to amplify approximately 700bp and 400bp overlapping portions of the 197 

mitochondrial DNA control region respectively. 198 

  199 
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The older museum specimens contained degraded DNA and amplification required targeting 200 

shorter segments of the control region (~250bp). Seven internal primers were designed (Table 3) 201 

using PRIMER3 (Rozen and Skaletsky, 2000) to amplify four consecutive sections of the control 202 

region (a total of approximately 750bp). These primers amplified the same section of the control 203 

region that was amplified for the non-degraded samples. Sufficient overlap was allowed between 204 

each short section to ensure accurate readings of the entire sequence. BeIP1f was modified from 205 

the forward primer M13Dlp 1.5. where the non-specific nucleotide ‘R’ was replaced by ‘G’ in the 206 

sequences amplified using the internal primers. This ensured that the sequence was more specific 207 

to the Bryde’s whale. BeIP3 and BeIP4 were used to extend the shorter 400bp sequences amplified 208 

using ProL_He and DLH-He to ~700bp. 209 

 210 

Insert Table 3 211 

 212 

Polymerase Chain Reaction (PCR) reaction mixes for primer M13DPp1.5 and Dlp8G were as 213 

follows: 1x PCR buffer (Bioline), 1.5mM magnesium chloride (MgCl2), 0.5 unit Taq DNA 214 

polymerase (Bioline), 0.24mM deoxyribonucleotide triphosphates (dNTP’s), 0.2 pmol of each 215 

primer, and ~40 ng genomic DNA in a 10 μl reaction. The PCR was conducted in a G-Storm 216 

Thermal Cycler (Gene Technologies), and the cycling profile was 94oC for 2 minutes, 30 cycles of: 217 

30s at 94oC, 30s at 58oC and 40s at 72oC, and a final 5 minutes at 72oC. Amplification conditions 218 

for primers ProL-He and DLH-He were as in Seddon et al. (2001). Products of all amplifications 219 

were manually checked for length and single bands on a 2% Agarose gel using Ethidium bromide 220 

and UV transillumination. 221 

 222 

The amplified products were outsourced (Macrogen, Korea) for sequencing on an automatic 223 

sequencer (ABI 3730 xl DNA Analyzer) using BigDyeTM Terminator version 3.1 cycling conditions 224 
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(Applied Biosystems). All successfully amplified sequences were trimmed to equal lengths (674bp) 225 

and aligned using ClustalW, available in MEGA version 6.0 (Tamura et al. 2013). Alignments were 226 

checked and confirmed by eye (GSP) and any uncertainties were checked by JAG. The number of 227 

haplotypes, haplotype frequencies, number of polymorphic sites, transitions, transversions and 228 

nucleotide composition, were calculated in ARLEQUIN version 3.5 (Excoffier et al. 2005). 229 

Haplotypic diversity and nucleotide diversity were calculated in DNASP version 5 (Librado and 230 

Rozas, 2009). Two samples, #37 and #38, were excluded from the above analyses due to the large 231 

amount of missing sequence data.  232 

 233 

Phylogenetic trees were constructed using the mtDNA sequences from this study and published 234 

sequences from GenBank that included B.edeni, B.brydei, B.borealis and B.omurai. The humpback 235 

whale (Megaptera novaeangliae) and fin whale (B. physalus) were included as outgroups (Table 236 

4). Pairwise comparisons of 18 haplotypes were conducted using the Maximum Composite 237 

Likelihood method (sum of log-likelihoods for all pairwise distances in a distance matrix, using the 238 

Tamura-Nei model (Tamura and Nei 1993)) available in MEGA version 6 (Tamura et al. 2013). 239 

This assumes an equal substitution pattern among lineages and of substitution rates among sites 240 

and was chosen as the best fit to the sequences based on the model assumptions. All positions 241 

containing alignment gaps and missing data were eliminated in the pairwise sequence comparisons 242 

(pairwise deletion option). Samples #37 and #38 were not included in pairwise comparisons.  243 

 244 
Insert Table 4 245 

The sequences were loaded into SeaView version 4 (Gouy et al. 2010) and the resulting multiple  246 

alignment was loaded into IQ tree (Trifinopoulos et al. 2016) which uses ModelFinder  247 

Kalyaanamoorthy et al. 2017) to determine the best model for phylogenetic estimates. The results 248 

were sorted by corrected Akaike’s Information Criterion (AICc) scores and the HKY+F model 249 

(Hasegawa et al. 1985) was the best model and was used in an heuristic Maximum Likelihood 250 
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phylogenetic search. There were 674 positions in the dataset. To map the origin of samples #37 and 251 

#38, a second ML phylogenetic analysis was conducted in which all positions containing alignment 252 

gaps and missing data were eliminated in sequence comparisons (complete deletion option) 253 

resulting in a total of 379 positions.  254 

  255 

To determine genetic differentiation, the number of nucleotide changes and pairwise distances 256 

between the individual sequences were calculated in MEGA version 6 (Tamura et al. 2013). This 257 

enabled quantification of the variation between the two populations of Bryde’s whales off southern 258 

Africa. Comparisons with other closely related species were made to investigate the number of 259 

differences between the inshore haplotypes and B. edeni as a relative measure of their level of 260 

relationship (population, sub species or species). The level of differentiation between the inshore 261 

and offshore types was measured using the PhiST (ΦST) scores calculated using strataG (Archer et 262 

al. 2016). Of the eight haplotypes (4 inshore and 4 offshore) identified in the study only seven were 263 

used for this comparison because Haplotype 6 (samples 37 and 38) had a large amount of missing 264 

data.  265 

 266 

RESULTS 267 

From a total of 111 samples, a 674bp region of the mitochondrial control region was successfully 268 

sequenced for 87% (97) of individuals. Partial sequences were obtained for the samples #37 and 269 

#38 where only the internal primers BeIP2 and BeIP4 amplified. The analyses that included these 270 

two samples used sequences trimmed to 379bp to account for the large amount of missing data. 271 

Table 5 gives details on the number of haplotypes, polymorphic sites, haplotypic diversity (Hd), 272 

nucleotide diversity and pairwise differences for the inshore and offshore populations.  273 

 274 
 275 

Insert Table 5 276 
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 277 
Of the eight haplotypes identified, H1 was the haplotype for 86 (93%) of the inshore samples (Table 278 

6), H2 for four individuals, H6 for samples #37 and #38, and the other five haplotypes were only 279 

present in one individual each. H5 (#12) and H7 (#43) represent two stranded individuals and H8 280 

represents the single North Atlantic specimen.  The SWIO (#36) and second Namibian (#44) 281 

samples (outside the known distributional limits for the inshore form) were identical to H1, the 282 

haplotype found in the majority of biopsy samples collected in inshore waters. There were 10 fixed 283 

differences between the samples that formed a clade with pelagic populations of B.brydei and those 284 

representing whales sampled in inshore waters (SA inshore) (Table 6). Sequences were submitted 285 

to GenBank as B.edeni under the accession numbers GU085094 – GU085099.   286 

Insert Table 6 287 

 288 

Nucleotide diversity amongst the inshore samples (n=92) was low (0.0003; SD = 0.0004); despite 289 

the much larger sample size this is considerably lower than amongst the 5 offshore samples (0.005; 290 

SD = 0.004). Haplotypes 2, 3 and 4 differed from H1 by only one indel (Table 6). H5 and H7 (SA 291 

offshore) differed from the inshore samples (H1) by 12 and 11 base changes respectively. The 292 

North Atlantic sample (H8) differed from the SE Atlantic (SA offshore) haplotypes by 4-5 base 293 

changes. The SWIO sample that was expected to differ greatly from the two South African 294 

populations due to the large geographical separation, had an identical haplotype to the inshore 295 

animals (H1). Given the available literature on this population, this result questions whether the 296 

population found south and east of Madagascar is isolated from the South African forms as was 297 

proposed by Best (2001).  298 

 The number of nucleotide changes and pairwise differences (percentage difference) was 299 

higher between the inshore haplotypes and the B. edeni sequences (4.5 -5.7%) than between SA 300 

inshore and pelagic Bryde’s whale populations (B.brydei) (1.7-2.3%). The inshore haplotypes also 301 

had a higher number of differences from B.edeni than they did from the Antarctic sei whale (4%) 302 
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(Table 7). Haplotypes 5, 7 and 8 were most similar to the pelagic Bryde’s whale (B.brydei) samples 303 

from the North and South Pacific and Indian oceans. The six samples collected for this study that 304 

grouped with other offshore (B.brydei) populations differed from each other by one to eight base 305 

changes (0.1-1.2%). This is similar to the number of differences between the two B.edeni specimens 306 

from Japan and Malaysia (1.1%).   307 

 308 

Insert Table 7 309 



14 

 

Phylogenetic Analysis  310 

Figure 3 shows the Maximum likelihood (ML) bootstrap phylogenetic tree and bootstrap support 311 

values. Haplotypes 5,7 (offshore) and 8 (N Atlantic) are in a sister group to haplotypes 1-4 (inshore) 312 

and appear to conform to B.brydei, forming a clade with other pelagic/offshore Bryde’s whale types 313 

from three different oceanic regions (South Pacific, Eastern Indian Ocean and North Pacific). There 314 

is a large separation between the inshore haplotypes and the B.edeni specimens from coastal Japan 315 

and Malaysia (Fig. 3).  316 

 317 

Insert Figure 3 318 

  The clade containing haplotypes 1-4 had strong bootstrap support (96%) as did its 319 

separation from a sister group containing haplotypes 5, 7 and 8 and the other B. brydei haplotypes 320 

(93%). The relatively low bootstrap probability (77%) for the six South African offshore Bryde’s 321 

whale specimens is most likely due to the few differences between their control regions (0.1%-322 

1.2%). Although there was strong support (81%) for the separation of the B.edeni group from the 323 

sei-Bryde’s clade, the bootstrap support for the sei-Bryde’s clade was low (49%) and a larger 324 

sample size from the offshore Bryde’s population is needed to fully understand the relationship of 325 

the two clades.  326 

 327 
 When samples 37 and 38 (H6) were included in the analysis and alignment gaps and 328 

missing data were deleted, a total of 379bp were available. These two samples formed a clade with 329 

other B.brydei populations from different oceanic regions, offering strong support that these two 330 

samples of unknown origin belong to the SE Atlantic (offshore) population as was predicted by 331 

PBB (Fig. 4, Appendix 2). 332 

 333 

Insert Figure 4 334 

Genetic Differentiation 335 
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In total, 674 usable bases were available for distance computation with the allowed level of missing 336 

data at 0.05. There were no shared haplotypes between the two populations (inshore and offshore) 337 

with an average Phi-statistic over all loci of ΦST = 0.984 (p < 0.001). The high ΦST score indicates 338 

complete separation between the inshore and offshore populations, with little or no gene flow 339 

between them.  340 

  341 
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DISCUSSION 342 

The aims of this study were primarily to identify the phylogenetic relationship between the two 343 

forms of Bryde’s whales found off South Africa, and to demonstrate the separation between B.edeni 344 

and the South African populations.  Since the two allopatric forms of South African Bryde’s whales 345 

were described by Best (1977) genetic confirmation of the degree of separation between these two 346 

types has been largely anticipated (Kershaw et al. 2013).  347 

 348 

The mtDNA control region has been shown to be a suitable marker choice for cetacean taxonomic 349 

clarification, and in particular for subspecies delineation due to its high mutation rate (Rosel et al. 350 

2017). The differentiation of populations into subspecies can occur over relatively short 351 

evolutionary timescales, especially in small populations that do not have high historical abundance 352 

or haplotypic diversity (Rosel et al. 2017).  The present study detected low haplotypic diversity for 353 

the inshore population and despite unreliable catch records for the species due to confusion with 354 

the sei whale, the species is not thought to have ever had a substantially higher abundance than at 355 

present (+- 600 individuals) (Best et al 1984; Penry 2010).  356 

 357 

Previous information on the inshore population summarised earlier addresses many of the 358 

diagnosable characteristics defined in Taylor et al. (2017).  In this study, high diagnosability was 359 

provided by the 10 fixed differences in the mtDNA control region sequences between the inshore 360 

and offshore samples. This characteristic is indicative of at least subspecies-level separation (Taylor 361 

et al. 2017, Archer et al. 2017).  362 

 363 

Taylor et al. (2017) also provided guidelines for the recommended data and analyses required to 364 

make conclusive recommendations for taxonomic separation and subspecies or species 365 

identification. We acknowledge that several of the guidelines were not addressed by this study and 366 
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therefore we refrain from making complete taxonomic revision recommendations until such time 367 

as the following additional data is available; nuclear DNA data to detect limitations to gene flow 368 

and the calculation of divergence times, effective population size estimates for the offshore 369 

population, and sufficient genetic sample sizes for the offshore population and other Bryde’s 370 

whales found globally.  371 

 372 

Molecular evidence of genetic divergence at higher than the population level is important to local 373 

conservation initiatives and for global conservation status assessments. Of particular conservation 374 

concern is the status of the inshore population that numbers only a few hundred animals and was 375 

recently reassessed as Vulnerable in the National Red List Assessment (Best et al. 1984; Penry 376 

2010, Penry et al. 2016). This small population faces several perceived threats such as competition 377 

with fisheries for commercially important fish stocks, entanglement in coastal fishing gear (6 378 

fatalities in 3 years) and disturbance from commercial marine tourism.  Another predator that relies 379 

on the same prey and habitat as the inshore Bryde’s whale, the African penguin, Spheniscus 380 

demersus, has shown a significant decline in numbers and a negative change in conservation status 381 

at both national and global level (Birdlife International 2016, Crawford et al. 2011). Clarification 382 

of the delineation of the inshore population is therefore critically important to encourage and 383 

support global and local conservation efforts. 384 

 385 

The status of the offshore (SE Atlantic) population is harder to assess because of the logistical and 386 

financial constraints to sampling in offshore waters and therefore this population remains classified 387 

as Data Deficient (DD) both nationally and globally (Reilly et al. 2008; Penry et al. 2016).  The 388 

samples found to represent this population were all from strandings or museum collections and 389 

their source population was unknown prior to analysis.  This highlights the importance of museum 390 

collections, and of accurate labelling and well-maintained records pertaining to each specimen.  391 
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 392 

Below we discuss the findings of our study in relation to available knowledge of these populations 393 

and the distributional ranges that were identified from commercial catch data. It is possible that the 394 

historical distributional ranges identified in Best (1977, 2001) were underestimated because they 395 

were limited to areas where commercial whaling fleets operated. This study identified two samples 396 

as inshore Bryde’s whales that were collected well outside the boundaries (by several hundred 397 

kilometres) of the inshore form described in Best (2001).  This result, although represented by only 398 

two samples, does offer some evidence of a larger distributional range for the inshore population; 399 

high individual resighting rates detected in photo-identification studies (Penry 2010) and 400 

subsequent unpublished fieldwork do not however suggest any substantial change in the small 401 

population size estimate for the inshore form.  402 

Identifying the specimens 403 

South African inshore population: One of the main aims of this study was to determine 404 

the identity of the South African inshore population within the Bryde’s-sei whale complex.  Most 405 

coastal or small-form Bryde’s whales are thought to conform to B.edeni (Anderson 1878).  406 

However, morphological investigations of animals caught in South African waters showed that the 407 

smaller, inshore form differed from B.edeni in several morphometric measurements (Best 1977).  408 

 409 

The majority of samples used in this study were collected from live Bryde’s whales occurring in 410 

shallow, coastal bays along the South African coast and were therefore expected to be from the 411 

inshore population.  Extremely low haplotypic variation is present within the population and is 412 

consistent with limited variation for coastal populations of Bryde’s whales occurring off the coasts 413 

of Bangladesh and Oman, and in the Gulf of Mexico (Kershaw et al. 2013, Rosel and Wilcox 2014). 414 

The genetic diversity found in this study and that of Kershaw et al. (2013) is unusually low for 415 

baleen whales.  Although the South African inshore form is currently referred to as B.edeni by the 416 
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Society for Marine Mammalogy, maximum likelihood analyses show that it groups more closely 417 

with B.brydei (pelagic populations) than with either of two B.edeni populations (coastal Japan and 418 

Malaysia) used for comparison in this study. Excluding the outgroups used here, the South African 419 

inshore form differed most from Balaenoptera edeni. This is supported by the higher number of 420 

differences in pairwise comparisons between the inshore haplotypes and B.edeni than between the 421 

inshore haplotypes and both B.borealis and B.brydei.  422 

 423 

Our results support that the inshore form could be a subspecies of B.brydei (offshore form) but we 424 

acknowledge that additional molecular markers and a larger sample size from the offshore 425 

population and other geographic areas is needed for confirmation of this. Our data do however 426 

show that the two populations are genetically divergent and that the inshore form is not synonymous 427 

with B.edeni.  When combined with morphological, reproductive, behavioural, and distributional 428 

characteristics, taxonomic separation between the inshore and offshore populations at the 429 

subspecific or specific level should be considered. Previous studies have reported similar findings 430 

(Wada and Numachi, 1991; Arnason et al. 1993; Wada et al. 2003). 431 

 432 

Offshore (Southeast Atlantic) population: Four individuals were identified as 433 

Balaenoptera brydei (offshore form). The presence of Isistius sp (cookie-cutter shark) scars on the 434 

body of sample #12 (Fig. 5) and # 43 support the offshore origins of these individuals, as does the 435 

account by PBB (Appendix 2) for samples #37 and #38.  As predicted, the assumed offshore 436 

specimens identified in this study form a clade with B.brydei in the South Pacific, North Pacific 437 

and Eastern Indian Ocean. B.brydei from South Africa only differs from its conspecific in the South 438 

Pacific (Omura et al. 1981) by ~0.5%. Together with published information on the morphology, 439 

distribution, feeding, breeding and migrations of the South African offshore form, the results of the 440 

molecular analyses do provide support for their identity as B.brydei, the pelagic/offshore form.   441 
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Insert Figure 5 442 

 443 

South West Indian Ocean (Madagascar Ridge): The single sample from the South 444 

Western Indian Ocean surprisingly had an identical haplotype to the South African inshore animals 445 

(H1). Discussion of this result is made cautiously because it represents only one individual and 446 

further samples from this area are needed to confirm the findings. However, based on the 447 

information provided by Best (2001), available data on the population off the south and east of 448 

Madagascar (from commercial catches) showed it to be morphologically smaller than the SA 449 

inshore form and differing in prey type. We therefore expected any animals sampled here to have 450 

a different genetic identity.  It is possible that there may be several different populations of medium-451 

sized balaenopterid whales in this region, as was recently shown with the discovery of Omura’s 452 

(Balaenoptera omurai) whale off Madagascar (Cerchio et al. 2015). We did consider that the 453 

whaling records and measurements discussed in Best (2001) may therefore actually refer to B. 454 

omurai, however the distributions do not overlap (Best, 2001, Cerchio et al. 2015).  It is also 455 

possible that the collection of this sample is due to range extension of the inshore form due to 456 

climate change, inaccurate distributional range definition due to limited coverage by commercial 457 

whaling vessels, or simply that this area has never been properly surveyed before. More samples 458 

from this area are needed before any conclusions can be made, but due to the result found for one 459 

of the stranded individuals in Namibia (discussed below), it may be the case that the distribution of 460 

the SA inshore form extends further up both the east and west coasts of southern Africa than was 461 

previously thought (see Best PB 2001). 462 

Walvis Bay, Namibia: Both samples from stranded Bryde’s whales in Namibia were 463 

expected to belong to the offshore population due to the presence of Isistius scars on the bodies and 464 

the published distributional range of this population on the west coast of Southern Africa. 465 

Additionally, the range of the inshore population is not known to extend as far up the west coast as 466 
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Walvis Bay. However, the results confirmed the identity of one individual (#43) as an offshore type 467 

(B.brydei) and the other (#44) as an inshore animal (H1), making it the first confirmed record of 468 

the SA inshore form occurring further north than Saldhana Bay, the western limit from catch data 469 

(Fig. 2A).  470 

Photographs of this animal (#44) show at least five fresh Isistius scars on the body and 471 

head. When the known distribution of the inshore population is considered, the occurrence of this 472 

animal in Walvis Bay (outside the known range by > 800 km) could be explained by it being young 473 

animal (juvenile at 5.6m) that became caught in the strong Benguela current system and swept out 474 

of range. However, the continental shelf off Walvis Bay is extremely wide, with the 100m isobath 475 

situated around 30km offshore, making the habitat conditions in terms of bathymetry similar to 476 

those for the known range of the inshore population (Best et al. 1984). The presence of Isistius 477 

scars on this individual was unexpected. 478 

 479 

The South African inshore and offshore forms differ from each other by far less than they would if 480 

the inshore form had fallen within the B.edeni clade, supporting the suggestion by Best (1977) that 481 

the two forms could both be B.brydei. Best (1977) summarised the descriptions and identifications 482 

of B.edeni and B.brydei (Anderson, 1878; Olsen, 1913; Junge, 1950; Soot-Ryan, 1961) and based 483 

on these sources it appears that B.edeni (as described by Anderson, 1878) is smaller than the inshore 484 

form off South Africa. It was however recommended that the inshore and offshore South African 485 

forms should be kept separate, and referred to as B.edeni and B.brydei respectively, pending further 486 

and specifically genetic investigations (Best, 1977). The mtDNA control region data used in this 487 

study separates the inshore form from B.edeni and supports its recognition as a subspecies of 488 

B.brydei through the diagnosable feature of 10 fixed differences between the inshore and offshore 489 

populations  490 

 491 
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Molecular comparisons with other Bryde’s whales in adjacent waters (west Africa; Namibia, 492 

Angola, Gabon and east Africa; Mozambique, Madagascar and Northern Indian Ocean) are needed 493 

to clarify their taxonomic status in the Bryde’s whale complex and to determine the distributional 494 

limits, and environmental and geographical boundaries for each species, subspecies or population.  495 

Of note are the findings of Yoshida and Kato (1999) who identified complete separation between 496 

offshore Bryde’s whales in the Western North Pacific and a coastal population in the East China 497 

Sea. In this region the Kuroshio Current appears to act as a physical barrier between the two 498 

populations. It is possible that the Agulhas and Benguela currents have a similar influence over the 499 

two allopatric forms found off southern Africa. 500 

Conclusions and Future work 501 

A number of molecular studies on Bryde’s whales in different geographic regions have now been 502 

completed (Luksenburg 2015; Rosel and Wilcox 2014; Kershaw et al. 2013; Pastene et al. 1997; 503 

Yoshida and Kato, 1999; Wada et al. 2003; Sasaki et al. 2005, 2006; Kanda et al. 2007). Several 504 

have recommended subspecific level separation between coastal and pelagic forms and the general 505 

consensus is that these molecular studies should be combined with further investigations on 506 

morphology, behaviour, ecology (prey type, distribution, migrations) and biology (reproductive 507 

patterns) before recommendations can be made on species designation and nomenclature.  508 

Limitations considered, this study further supports that there are numerous discrete populations of 509 

Bryde’s whales that must be considered separately for conservation purposes, particularly the 510 

coastal populations which appear to be inherently small, a reflection of their apparent restricted 511 

distributions.  Regardless of the current recommended nomenclature, until all available genetic data 512 

are included in a single global analysis, we will continue to debate the suggestions for species or 513 

subspecies recognition based on area specific studies.  514 

 515 



23 

 

Acknowledgements: Logistics and funding to cover fieldwork and laboratory costs were provided 516 

by The Centre for Dolphin Studies, Rufford Foundation, Society for Marine Mammalogy, Mammal 517 

Research Institute Whale Unit (University of Pretoria), Sea Mammal Research Unit (University of 518 

St Andrews) and several international interns.  We thank the staff and students of St Andrews and 519 

Stellenbosch University’s molecular labs, in particular Tanya Sneddon, for many hours of 520 

laboratory support, and Mike Double from the Australian Marine Mammal Centre for sequencing 521 

the sample from Madagascar.  A large contribution of samples from the Port Elizabeth and Iziko 522 

South African Museum collections greatly increased the sample coverage, as did two samples from 523 

stranded Bryde’s whales collected by the Namibian Dolphin Project. Thank you to John Bannister 524 

for organising the CITES permit from Australia, and to Curt and Micheline Jenner for inviting GSP 525 

on board their research vessel Whale Song and collecting additional samples for this study. The 526 

collection and movement of samples was carried out under permits issued by the Department of 527 

Environmental Affairs (South Africa), CITES and DEFRA (UK). Finally, thanks to Theoni 528 

Photopoulou and Tsamaelo Malebu for assisting with the maps, Maria João Janeiro Silva and 529 

Carolin Kosiol for analytical software assistance, and Tim Collins and the reviewers for 530 

constructive comments that improved the final version of this paper.    531 



24 

 

References 532 

Anderson, J. (1878). Anatomical and zoological researches comprising an account of the zoological 533 
results of the two expeditions to Western Yunnan in 1868 and 1875; and a monograph of 534 
the two cetacean genera, Platanista and Orcella. Bernard Quaritch, London, 2, 551-564 + 535 
plate XLIV. 536 

Archer, FI, Adams, P. E. and Schneiders, B. B. (2016) strataG: An R package for 537 
 manipulating, summarizing and analysing population genetic data. Molecular Ecology 538 

Resources.   doi:10.1111/1755-0998.12559 539 
 540 
Archer, FI Martien, K and Taylor, B.L. (2017). Diagnosability of mtDNA with Random Forests: 541 
Using sequence data to delimit subspecies. Marine Mammal Science, 33, S1, 101-131. 542 

Árnason, Ú. & Best, P.B. (1991). Phylogenetic relationships within the Mysticeti (whalebone 543 
whales) based upon studies of highly repetitive DNA in all extant species. Hereditas, 114, 544 
263-269. 545 

Árnason U, Gullberg A, Widegren B. (1993). Cetacean Mitochondrial DNA Control Region: 546 
Sequences of All Extant Baleen Whales and Two Sperm Whale Species. Molecular 547 
Biology and Evolution, 10, 960-970. 548 

Bannister JL (2002). Baleen Whales, Mysticetes. In Encyclopedia of Marine Mammals (eds WF 549 
Perrin, B Wursig & JGM Thewissen), pp. 62-72. Academic Press. 550 

Best PB (1977). Two allopatric forms of Bryde's whale off South Africa.  Report of the 551 
International Whaling Commission (Special Issue 1), 10-38. 552 

Best PB (1996). Evidence of migration by Bryde's whales from the offshore population in the 553 
Southeast Atlantic.  Reports of the International Whaling Commission, 46, 315-322. 554 

Best PB (2001). Distribution and population separation of Bryde's whale Balaenoptera edeni off 555 
southern Africa. Marine Ecology Progress Series, 220, 277-289. 556 

Best PB, Butterworth DS, Rickett LH (1984). An Assessment Cruise for the South African Inshore 557 
Stock of Bryde's whales Balaenoptera edeni. Reports of the International Whaling 558 
Commission, 34, 403-423. 559 

BirdLife International (2016). Spheniscus demersus. The IUCN Red List of Threatened Species 560 
2016:e.T22697810A93641269. http://dx.doi.org/10.2305/IUCN.UK.2016-561 
3.RLTS.T22697810A93641269.en 562 

Cerchio S, Andrianantenaina B, Lindsay A, Rekdahl M, Andrianarivelo N, Rasoloarijao T (2015).  563 
Omura’s whales (Balaenoptera omurai) off northwest Madagascar: ecology, behaviour 564 
and conservation needs. Royal Society open science, 2, 15031. 565 

Crawford RJM, Altwegg R, Barham BJ, Barham PJ, Durant JM, Dyer BM, Makhado AB, Pichegru 566 
L, Ryan PG, Underhill LG, Upfold L, Visagie J, Waller LJ, Whittington PA (2011). 567 



25 

 

Collapse of South Africa’s penguins in the early 21st century: a consideration of food 568 
availability. African Journal of Marine Science, 33, 139–156. 569 

Committee on Taxonomy (2011). List of marine mammal species and subspecies. Society for 570 
Marine Mammalogy, www.marinemammalscience.org, consulted on 22 March 2018.  571 

Committee on Taxonomy. (2017). List of marine mammal species and subspecies. Society for 572 
Marine Mammalogy, www.marinemammalscience.org, consulted on 22 March 2018. 573 

Dalebout ML, Robertson KM, Frantzis A, Engelhaupt D, Mignucci-Giannoni AA, Rosario-574 
Delestre RJ, Baker CS (2005). Worldwide structure of mtDNA diversity among Cuvier's 575 
beaked whales (Ziphius cavirostris): implications for threatened populations. Molecular 576 
Ecology, 14, 3353-3371. 577 

Excoffier L, Laval LG, Schneider S (2005) Arlequin version. 3.0:  An integrated software package 578 
for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. 579 

Gouy M., Guindon S. & Gascuel O. (2010) SeaView version 4: a multiplatform graphical user 580 
interface for sequence alignment and phylogenetic tree building. Molecular Biology and 581 
Evolution 27(2):221-224. 582 

Hasegawa M, Kishino H, Yano T (1985) Dating of human-ape splitting by a molecular clock of 583 
mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174. 584 

Jansen van Vuuren B, Best PB, Roux J-P, Robinson TJ (2002). Phylogeographic population 585 
structure in the Heaviside’s dolphin (Cephalorhynchus heavisidii): conservation 586 
implications. Animal Conservation 5, 303-307. 587 

Jenner, C, Jenner M (2011).  Preliminary report: A description of cetacean observations during the 588 
delivery voyage of Whale Song from Malta to Fremantle. November 2009 to February 589 
2010. Paper SC/63/O20 presented to the Scientific Committee of the International Whaling 590 
Commission. 5pp. 591 

Junge GCA (1950) On a Specimen of the rare Fin whale, Balaenoptera edeni Anderson, stranded 592 
on Pulu Sugi near Singapore. Zoologische Verhandelingen, 9, 1-33. 593 

Kalyaanamoorthy S, Bui Quang Minh, Thomas KF Wong, Arndt von Haeseler, Jermiin LS  (2017) 594 
ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 595 
14, 587–589. 596 

Kanda N, Goto M, Kato H, McPhee M, Pastene LA (2007) Population genetic structure of Bryde's 597 
whales (Balaenoptera brydei) at the inter-oceanic and trans-equatorial levels. Conservation 598 
Genetics, 8, 853-864. 599 

Kato H, Shinohara E, Kishiro T, Noji S (1996) Distribution of Bryde's Whales off Kochi, Southwest 600 
Japan, From the 1994/95 Sighting Survey. Reports of the International Whaling 601 
Commission, 46, 429-436. 602 



26 

 

Kershaw F, Leslie MS, Collins T, Mansur RM, Smith BD, Minton G, Baldwin R, LeDuc R, 603 
Anderson C, Brownell RJ Jnr, Rosenbaum HC (2013) Population Differentiation of 2 604 
Forms of Bryde’s Whales in the Indian and Pacific Oceans. Journal of Heredity, 104, 755-605 
764.  606 

Larsen F (1998) Development of a biopsy system primarily for use on large cetaceans. Paper 607 
SC/50/O15 presented to the Scientific Committee of the International Whaling 608 
Commission. 7 pp. 609 

Luksenburg JA, Henriquez A, Sangster G (2015) Molecular and morphological evidence for the 610 
subspecific identity of Bryde’s whales in the southern Caribbean. Marine Mammal Science, 611 
31, 1568-1579. 612 

Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA 613 
polymorphism data. Bioinformatics, 25, 1451-1452. 614 

Mikhalev YA (2000). Whaling in the Arabian Sea by the whaling fleets 'Slava' and 'Sovietskaya 615 
Ukraina'. . In Soviet whaling data (1949-1979). (eds A.V. Yablokov & V.A. Zemsky), pp. 616 
141-181. Centre for Russian Environmental Policy, Moscow. 617 

Nguyen L.-T., Schmidt H.A., von Haeseler A., and Minh B.Q. (2015) IQ-TREE: A fast and 618 
effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. 619 
Evol., 32:268-274. 620 

Olsen O (1913) On the external characters and biology of Bryde's whale (Balaenoptera brydei), a 621 
new rorqual from the Coast of South Africa. Proceedings of the Zoological Society of 622 
London, 83, 1073-1090. 623 

Omura H, Kasuya T, Kato H, Wada S (1981) Osteological Study of the Bryde's Whale from the 624 
Central South Pacific and Eastern Indian Ocean. Scientific Reports of the Whales Research 625 
Institute, 33, 1-26. 626 

Pastene LA, Goto M, Itoh S, Wada S, Kato H (1997) Intra- and inter- oceanic patterns of 627 
Mitochondrial DNA variation in the Bryde's whale, Balaenoptera edeni.  Reports of the 628 
International Whaling Commission, 47, 569-574. 629 

Patterson BD, Velazco PM (2008) Phylogeny of the rodent genus Isothrix (Hystricognathi, 630 
Echimyidae) and its diversification in Amazonia and the eastern Andes. Journal of 631 
Mammalian Evolution, 15, 181-201. 632 

Penry GS (2010) The Biology of South African Bryde’s whales. Unpublished PhD Thesis, 633 
University of St Andrews, Scotland, United Kingdom. Available from 634 
http://hdl.handle.net.10023/921. 635 

Penry G, Findlay K, Best P. (2016). A conservation assessment of Balaenoptera edeni. In Child 636 
MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The Red List 637 
of Mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity 638 
Institute and Endangered Wildlife Trust, South Africa. 639 



27 

 

Perrin WF (2017) World Cetacea Database. Accessed at http://www.marinespecies.org/cetacea. 640 

Pichler FB, Dalebout ML, Baker CS (2001) Non-destructive DNA extraction from sperm whale 641 
teeth and scrimshaw. Molecular Ecology Notes, 1, 106-109. 642 

Reilly, S.B., Bannister, J.L., Best, P.B., Brown, M., Brownell Jr., R.L., Butterworth, D.S., 643 
Clapham, P.J., Cooke, J., Donovan, G.P., Urbán, J. & Zerbini, A.N. 2008. Balaenoptera 644 
edeni. The IUCN Red List of Threatened Species 2008:  645 
http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T2476A9445502.en. 646 

Rice DW (1998) Marine Mammals of the World, Systematics and Distribution, 4th edition. Society 647 
for Marine Mammalogy Special Publication 4. 648 

Rosel P E, Wilcox LA (2014) Genetic evidence reveals a unique lineage of Bryde’s whales in the 649 
northern Gulf of Mexico. Endangered Species Research, 23, 19-34. 650 

Rosel PE, Hancock-Hanser BL, Archer FI et al 2017. Examining metrics and magnitudes of genetic 651 
differentiation used to delimit cetacean subspecies based on mitochondrial DNA control 652 
region sequences. Marine Mammal Science, 33 (Special Issue): 76-100. 653 

 654 
Rosenbaum HC, Egan MG, Clapham PJ, Brownell RLJ, Desalle R (1997) An effective method for 655 

isolating DNA from historical specimens of baleen. Molecular Ecology, 6, 677-681. 656 

Rozen S, Skaletsky HJ (2000). Primer3 on the WWW for general users and for biologist 657 
programmers.  In: In Bioinformatics Methods and Protocols: Methods in Molecular 658 
Biology. (eds S. Krawetz & S. Misener), pp. 365-386. Humana Press, Totowa, NJ. 659 

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual. 2nd edn. 660 
Cold Spring Harbor Laboratory Press, New York. 661 

Sasaki T, Nikaido M, Hamilton H, Goto M, Kato H, Kanda N, Pastene LA, Cao Y, Fordyce RE, 662 
Hasegawa M, Okada N (2005) Mitochondrial phylogenies and evolution of mysticete 663 
whales. Systematic Biology, 54, 77-90. 664 

Sasaki T, Nikaido M, Wada S, Yamada TK, Cao Y, Hasegawa M, Okada N (2006) Balaenoptera 665 
omurai is a newly discovered baleen whale that represents an ancient evolutionary lineage. 666 
Molecular Phylogenetics and Evolution, 41, 40-52. 667 

Seddon JM, Santucci F, Reeve NJ, Hewitt GM (2001) DNA footprints of European hedgehogs, 668 
Erinaceus europaeus and E. concolor: Pleistocene refugia, postglacial expansion and 669 
colonization routes. Molecular Ecology 10, 2187-2198. 670 

Soot-Ryan T (1961) On a Bryde's whale stranded on Curaçao. Norsk Hvalfangsttidende, 50, 323-671 
332. 672 

Tamura K, Stecher G, Peterson D, Filipski A and Kumar S (2013) MEGA6:  Molecular 673 
Evolutionary Genetic Analysis version 6.0.  Molecular Biology and Evolution, 30, 2725-674 
2729. 675 



28 

 

Taylor BL, Archer FI, Martien KK et al (2017) Guidelines and quantitative standards to improve 676 
consistency in cetacean subspecies and species delimitation relying on molecular genetic 677 
data. Marine Mammal Science 33 (Special issue), 132-155. 678 

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016). W-IQ Tree: A fast online 679 
phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, W232-680 
W235.  https://doi.org/10.1093/nar/gkw256. 681 

Wada S, Numachi K (1991) Allozyme analyses of genetic differentiation among the populations 682 
and species of the Balaenoptera. Genetic ecology of whales and dolphins. Reports of the 683 
International Whaling Commission, Special issue 13: 1-311.  684 

Wada S, Oishi M, Yamada TK (2003) A newly discovered species of living baleen whale. Nature, 685 
426, 278-281. 686 

Weir CR (2007) Occurrence and distribution of cetaceans off northern Angola, 2004/05. Journal 687 
of Cetacean Research and Management, 9, 225-239.  688 

Yamada TK, Kakuda T, Tajima Y (2008) Middle sized balaenopterid whale specimens in the    689 
Philippines and Indonesia. Memoirs of the National Museum of Nature and Science, 45, 690 
75-83. 691 

Yoshida H, Kato H (1999) Phylogenetic Relationships of Bryde's Whales in the Western North 692 
Pacific and Adjacent waters inferred from Mitochondrial DNA sequences. Marine 693 
Mammal Science, 15, 1269-1286. 694 

  695 



29 

 

LIST OF FIGURES AND TABLES 696 
 697 
Fig. 1. Distributional ranges of the 3 putative populations of Bryde’s whales in the southern African 698 

subregion (from Best PB 2001). 699 

Fig. 2 Map of South Africa (A) showing the locations of biopsy samples (●) and stranded whales (▲) 700 

collected for this study. The map of Africa (B) shows the location of the two biopsy samples (●) collected 701 

from the RV Whale Song off Guinea Bissau and south and east of Madagascar, and the two stranded Bryde’s 702 

whales at Walvis Bay, Namibia (▲).  703 

Fig. 3 Maximum Likelihood phylogenetic tree. Bootstrap support from 100 iterations for each grouping is 704 

shown next to the branches.  705 

Fig. 4 Maximum Likelihood phylogenetic tree with the additional two samples (37 and 38). Branches 706 

correspond to partitions reproduced in more than 50% of bootstraps. Bootstrap support from 100 replications 707 

are shown next to the branches Branch lengths are measured in the number of substitutions per site and the 708 

tree is drawn to scale.  H1 and H2 represent the South African inshore population.  709 

Fig. 5 Sample #12 (ISAM 84/28), showing the presence of healed and fresh oval pits caused by the cookie 710 

cutter shark (Isistius sp). Photograph: P.Best, Iziko South African Museum. 711 

 712 

Table 1. Summary of the morphological and ecological differences between the inshore and offshore South 713 

African Bryde’s whale populations (data from Best, PB. 1977). 714 

 715 

Table 2 Summary of the source, type of material, number, and location of specimens used in this study 716 

(full details in Appendix 1). Biopsies were collected by: GSP or one of her research team (GSP), Curt 717 

Jenner on the Research Vessel Whale Song (RVWS) and the Mammal Research Institute’s Whale Unit 718 

(MRIWU). Material from strandings and museums came from the Department of Environmental Affairs 719 

(DEA), Iziko South African Museum (ISAM), Port Elizabeth Museum (PEM) and the Namibian Dolphin 720 

Project (NDP). 721 

 722 

Table 3 Primers used in this study.  BeIP 1-4 are internal primers designed for amplifying short, 723 

consecutive sections of the mtDNA control region of B. edeni/brydei. The total number of bases (bp) 724 

amplified by each primer is given. 725 

 726 

Table 4 MtDNA control region sequences from Genbank. Accession numbers (Acc No.), species name 727 

according to Genbank, geographical origin of specimen (Origin), references (Ref) and the abbreviation 728 

used (Abbrev) in this paper are given.  729 

 730 



30 

 

Table 5 Differences between the South African inshore and offshore ecotypes: Number of sequences for 731 

each population (NS), number of haplotypes identified (NH) and the number of usable sites (sites) for each 732 

population are shown. Differences are represented by the haplotype diversity (HD), polymorphic site 733 

composition (number (No., Transitions (Ts), Transversions (Tv) and Indels (In)), nucleotide diversity (ND) 734 

and number of pairwise differences (PDs).   735 

Table 6. The unique haplotypes identified in this study (H1- H8). The numbers in brackets refer to the number 736 

of individuals represented by each haplotype.  737 

Table 7. Number (above diagonal) and percentage (below diagonal) of pairwise differences in control region 738 

sequence substitutions.  H1-H8 refer to haplotypes identified from the study samples. H6 was excluded due 739 

to large amount of missing data. Abbreviations for Genbank sequences are as follows: B. edeni from Malaysia 740 

and Coastal Japan (BedM, BedJ); B. brydei from South Pacific, Eastern Indian Ocean and Northwest Pacific 741 

(BbrSP, BbrEIO, BbrNP); B.borealis from the Antarctic Ocean and Icelandic waters (BborA and BborI); 742 

Balaenoptera omurai (Bomu); Balaenoptera physalus (Bphy) and Megaptera novaeangliae (Mnov).  743 



31 

 

Appendix 1.  Specimen number, source, type of material, date of collection and location where the sample was collected are given. DEA = Department of 
Environmental Affairs, ISAM = South African Museum, Cape Town, PEM= Port Elizabeth Museum, RVWS-Research Vessel Whale Song. 

 
No. 

(#) 

Source Museum/Biopsy 

No. 

Material Date Location Latitude Long 

1 Wild  Skin biopsy 31/08/2007 Plettenberg Bay 34.16913 23.41558 

2 PEM PE 3337 Skin, blubber and muscle 24/02/2008 The Willows,PE   

3 Wild  Skin biopsy 16/04/08 Plettenberg Bay 34.16913 23.41558 

4 Wild  Skin biopsy 16/04/08 Plettenberg Bay 34.16913 23.41558 

5 Wild  Skin biopsy 21/04/08 Plettenberg Bay 34.16913 23.41558 

6 Wild  Skin biopsy 24/04/08 Plettenberg Bay 34.16913 23.41558 

7 Wild  Skin biopsy 07/05/08 Plettenberg Bay 34.16913 23.41558 

8 Wild  Skin biopsy 07/05/08 Plettenberg Bay 34.16913 23.41558 

9 Wild  Skin biopsy 23/05/08 Plettenberg Bay 34.16913 23.41558 

10 Wild  Skin biopsy 05/06/08 Plettenberg Bay 34.16913 23.41558 

11 ISAM 84/20 Skin and blubber 10/07/84 Asfontein   

12 ISAM 84/28 Skin and blubber 11/09/84 St Helena Bay   

13 ISAM 88/4 Blubber 15/02/88 Die Dam   

14 ISAM 90/37 Skin and blubber 1/12/90 Blouberg Beach   

15 ISAM 91/16 Blubber 03/09/91 Scarborough   

16 ISAM ZM 12962 Bone-L mandible 1913 Saldanha Bay   

17 PEM 70 Bone-skull 15/03/69 Cape St Francis   

18 PEM 72 Bone-T.bulla 01/07/69 The Willows, PE   

19 PEM 413 Bone-T.bulla 06/07/79 Sundays River mouth   

20 PEM 758 Baleen 23/07/81 Maitland River mouth   
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21 PEM 840 Baleen 21/06/82 Swarkops River mouth   

22 Wild  Skin biopsy 28/09/05  32 41.08S 17 59.74E 

23 ISAM  Soft tissue 15/05/06 Gouritzmond   

24 ISAM  Soft tissue 18/03/07 Stillbaai   

25 ISAM ZM 41283 Baleen     

26 ISAM ZM 41244(92/12) Baleen 10/08/92 Kleinbaai, Bloubergstrand   

27 ISAM ZM 39830 Bone-skull 15/08/63 Milnerton beach- 

lighthouse 

  

28 DEA MCM 2008/11 Skin 04/08/08 Olifantsbos, Cape Peninsula   

29 DEA MCM 99/13 Skin 01/11/99 Glencairn beach, False Bay   

30 DEA MCM2002/4 Skin 09/05/02 Mudge Point, Hermanus   

31 DEA MCM 2003/8 Skin 01/08/02 Table Bay docks   

32 DEA MCM 2003/8 Skin 17/06/03 Jakkalsfontein   

33 DEA MCM2003/113 Skin 26/04/03 Dana Bay, MB   

34 DEA MCM 2008 Skin 11/08 Muizenberg   

35 RVWS  Skin biopsy 12/2010 N Atlantic   

36 RVWS  Skin biopsy 01/2011 S Madagascar 28o 4S 48o.2E 

37 ISAM  Foetus ? MV Sierra   

38 ISAM ZM 39958 Baleen 11121983 Table Bay Harbour   

39 ISAM  Skin, baleen April 2012 Buffalo Bay   

40 ISAM  Skin May 2012 Kleinbaai   

41 PEM PEM4636 Skin 29/03/2012 Maitland River mouth   

42 PEM PEM4653 Skin 11/05/2012 Blue Horizon Bay   

43 NDP  Skin Jan 2012 Walvis Bay   
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44 NDP  Skin June 2012 Walvis Bay   

 

45 Wild BW1 Skin biopsy 2042012 Plettenberg Bay  

34.03628 23.41618 

46 Wild BW2 Skin biopsy 2042012 Plettenberg Bay 34.08675 23.42158 

47 Wild BW3 Skin biopsy 2042012 Plettenberg Bay 34.16913 23.41558 

48 Wild BW4 Skin biopsy 3042012 Plettenberg Bay 34.03775 23.39542 

49 Wild BW5 Skin biopsy 3042012 Plettenberg Bay 34.0113 23.47683 

50 Wild BW6 Skin biopsy 3042012 Plettenberg Bay 34.12683 23.43276 

51 Wild BW7 Skin biopsy 4042012 Plettenberg Bay 33.99736 23.5543 

52 Wild BW8 Skin biopsy 4042012 Plettenberg Bay 33.99728 23.5613 

53 Wild BW9 Skin biopsy 5042012 Plettenberg Bay 34.08545 23.41895 

54 Wild BW10 Skin biopsy 5042012 Plettenberg Bay 34.06076 23.4177 

55 Wild BW11 Skin biopsy 5042012 Plettenberg Bay 34.05965 23.42317 

56 Wild BW12 Skin biopsy 11042012 Plettenberg Bay 34.01260 23.48300 

57 Wild BW13 Skin biopsy 13042012 Plettenberg Bay 34.0593 23.4274 

58 Wild BW14 Skin biopsy 13042012 Plettenberg Bay 34.07403 23.39891 

59 Wild BW15 Skin biopsy 18042012 Plettenberg Bay 34.12097 23.4134 

60 Wild BW16 Skin biopsy 22062012 East London 32.8944 28.15505 

61 Wild BW17 Skin biopsy 17082012 False Bay 34.17487 18.55727 

62 Wild BW18 Skin biopsy 18082012 False Bay 34.17101 18.58525 

63 Wild BW19 Skin biopsy 18082012 False Bay 34.25738 18.619 

64 Wild BW20 Skin biopsy 18082012 False Bay 34.24762 18.60332 

65 Wild BW21 Skin biopsy 18082012 False Bay 34.19846 18.52594 

66 Wild BW22 Skin biopsy 23082012 False Bay 34.11949 18.5147 
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67 Wild BW23 Skin biopsy 23082012 False Bay 34.19128 18.63601 

68 Wild BW24 Skin biopsy 23082012 False Bay 34.20761 18.65402 

69 Wild BW25 Skin biopsy 23082012 False Bay 34.1863 18.60914 

70 Wild BW26 Skin biopsy 24082012 False Bay 34.16134 18.65459 

71 Wild BW27 Skin biopsy 22032013 Plettenberg Bay 34.14729 23.41065 

72 Wild BW28 Skin biopsy 24032013 Plettenberg Bay 34.07913 23.39539 

73 Wild BW29 Skin biopsy 25032013 Plettenberg Bay 34.02551 23.52082 

74 Wild BW30 Skin biopsy 28032013 Plettenberg Bay 34.16635 23.36704 

75 Wild BW31 Skin biopsy 28032013 Plettenberg Bay 34.16996 23.36767 

76 Wild BW32 Skin biopsy 5042013 Plettenberg Bay 34.16441 23.46141 

77 Wild BW33 Skin biopsy 6042013 Plettenberg Bay 34.07588 23.45184 

78 Wild BW34 Skin biopsy 11042013 Plettenberg Bay 34.06365 23.4732 

79 Wild BW35 Skin biopsy 12042013 Plettenberg Bay 34.11415 23.59485 

80 Wild BW36 Skin biopsy 12042013 Plettenberg Bay 34.02042 23.54149 

81 Wild BW37 Skin biopsy 13042013 Plettenberg Bay 34.12695 23.4211 

82 Wild BW38 Skin biopsy 13042013 Plettenberg Bay 34.09232 23.48634 

83 Wild BW39 Skin biopsy 7052013 False Bay 34.18938 18.73845 

84 Wild BW40 Skin biopsy 7052013 False Bay 34.12019 18.5773 

85 Wild BW41 Skin biopsy 8052013 False Bay 34.10033 18.57143 

86 Wild BW42 Skin biopsy 11052013 False Bay 34.13228 18.49152 

87 Wild BW43 Skin biopsy 12052013 False Bay 34.11345 18.5888 

88 Wild BW44 Skin biopsy 12052013 False Bay 34.1222 18.64432 

89 Wild BW45 Skin biopsy 12052013 False Bay 34.0927 18.6595 

90 Wild BW46 Skin biopsy 12052013 False Bay 34.14714 18.6962 
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91 Wild BW47 Skin biopsy 12052013 False Bay 34.14811 18.69244 

92 Wild BW48 Skin biopsy 12052013 False Bay 34.14174 18.66666 

93 Wild BW49 Skin biopsy 10082013 False Bay 34.25159 18.73582 

94 Wild BW50 Skin biopsy 10082013 False Bay 34.12012 18.70015 

95 Wild BW51 Skin biopsy 19082013 False Bay 34.2568 18.62858 

96 Wild BW52 Skin biopsy 23082013 False Bay 34.19211 18.5323 

97 Wild BW53 Skin biopsy 23082013 False Bay 34.18452 18.53082 

98 Wild BW54 Skin biopsy 2082013 Plettenberg Bay  34.13736 23.44129 

99 Wild BW55 Skin biopsy 2092013 Plettenberg Bay 34.16222 23.41961 

100 Wild BW56 Skin biopsy 2092013 Plettenberg Bay 34.18313 23.29155 

101 Wild BW57 Skin biopsy 2092013 Plettenberg Bay 34.18967 23.28212 

102 Wild BW58 Skin biopsy 5092013 Plettenberg Bay 34.05288 23.39849 

103 Wild BW59 Skin biopsy 2092013 Plettenberg Bay 34.18928 23.32329 

104 Wild BW60 Skin biopsy 12092013 Plettenberg Bay 34.0657 23.53479 

105 Wild BW61 Skin biopsy 17092013 Plettenberg Bay 34.08241 23.40592 

106 Wild BW62 Skin biopsy 17092013 Plettenberg Bay 34.10933 23.48392 

107 Wild BW63 Skin biopsy 22092013 Plettenberg Bay 34.17833 23.383055 

108 Wild BW64 Skin biopsy 22092013 Plettenberg Bay 34.17868 23.343276 

109 Wild BW65 Skin biopsy 22092013 Plettenberg Bay 34.17542 23.347943 

110 Wild BW66 Skin biopsy 22092013 Plettenberg Bay 34.14563 23.35694 

111 DEA SFRI10/19 Skin (male, 12.63m) 30082010 Sopiesklip 34.75381 19.5556 
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Appendix 2. The history of samples 37 and 38, recounted by PBB. 

A male Bryde’s whale foetus (#37) ca 35 cm long was presented to ISAM as having belonged to T. Haraldsen, ex-captain of the “pirate” whaling catcher-factory 

ship MV Sierra. As this vessel’s operations were largely concentrated on the offshore population of Bryde’s whales on the west coast of southern Africa (Best, 

1996), and for security reasons excluded inshore waters on the South African coast, it is highly likely that this specimen originated from the offshore population, 

and it was treated such in analysis. 

 On 11 December 1983, a 14.7m male Bryde’s whale was found floating dead but fresh in Ben Schoeman dock, Table Bay harbour. Its skin was intact and bore a 

large number of healed oval scars on the peduncle and flanks. There was also a large vertical abrasion about mid-length on the left side, suggestive of a ship strike. 

It was towed out to sea on the same day, but washed up on 15 December at Koeberg Power station, 40 km to the north. It was measured on 16 December, a testis 

collected and measured (41.5 x 12.5 x 6 cm) with cestode Phyllobothrium cysts recorded in the blubber, and a section of baleen plates collected before the carcase 

was buried on the beach. The baleen was presented to the museum in February 1984 and accessioned as ZM 39958 (#38). 

 

The size, scarring and timing all indicate that this was most likely to be a representative of the offshore population that was struck by a ship at sea and carried 

inadvertently on its bow into the docks. Unfortunately, the baleen was either never labelled or subsequently lost its accession tag, but during a search of the ISAM 

collection in 2011 a section of unlabelled baleen was found that in description closely matched that of ZM 39958, and this was sampled on that assumption. 

 
 


