97 research outputs found

    Regional ventilation changes in the lung: Treatment response mapping by using hyperpolarized gas MR imaging as a quantitative biomarker

    Get PDF
    Purpose: To assess the magnitude of regional response to respiratory therapeutics in the lungs using Treatment Response Mapping (TRM) with hyperpolarized gas MRI. TRM is used to quantify regional physiological response in asthmatic adults using a bronchodilator challenge. Methods: The study was approved by the national research ethics committee and performed with informed consent. Imaging was performed in 20 adult asthmatic patients using hyperpolarized 3He ventilation MRI. Two sets of baseline images were acquired before inhalation of a bronchodilator (Inhaled Salbutamol 400 mcg) and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), is calculated as the difference in regional gas distribution (R(r) = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global TRM (ΔRnet) was then used as global lung index for comparison with metrics of bronchodilator response measured using spirometry and the global imaging metric, percentage ventilated volume (%VV). Results: ΔRnet showed significant correlation (p<0.01) with changes in FEV1 (r=0.70), FVC (r=0.84) and %VV (r=0.56). A significant (p<0.01) positive treatment effect was detected by all metrics, however ΔRnet showed a lower inter-subject coefficient of variation (CV=64%) than all of the other tests (CV≥99%). Conclusions: TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as sensitive regional outcome metric of novel respiratory interventions. Online supplemental material is available for this article

    Genetic signatures of parental contribution in black and white populations in Brazil

    Get PDF
    Two hundred and three individuals classified as white were tested for 11 single nucleotide polymorphisms plus two insertion/deletions in their Y-chromosomes. A subset of these individuals (n = 172) was also screened for sequences in the first hypervariable segment of their mitochondrial DNA (mtDNA). In addition, complementary studies were done for 11 of the 13 markers indicated above in 54 of 107 black subjects previously investigated in this southern Brazilian population. The prevalence of Y-chromosome haplogroups among whites was similar to that found in the Azores (Portugal) or Spain, but not to that of other European countries. About half of the European or African mtDNA haplogroups of these individuals were related to their places of origin, but not their Amerindian counterparts. Persons classified in these two categories of skin color and related morphological traits showed distinct genomic ancestries through the country. These findings emphasize the need to consider in Brazil, despite some general trends, a notable heterogeneity in the pattern of admixture dynamics within and between populations/groups

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions
    corecore