53 research outputs found

    Leucine Rich Repeat Kinase 2 in the pathogenesis of Parkinson's disease

    Get PDF
    The Leucine Rich Repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic cause of Parkinons's disease (PD) which is clinically and pathologically indistinguishable from idiopathic PD. The effects of the G2019S mutation were explored in primary fibroblasts and SHSY5Y cells expressing wild type or G2019S LRRK2. LRRK2 was predominantly in the cytosol and small vesicular fraction of lymphoblasts and SHSY5Y cells with some localized to the mitochondria in overexpressing cells. While we could detect LRRK2 in various mouse and marmoset brain regions LRRK2 protein levels were higher in fibroblast and lymphoblast cultures. LRRK2 cellular distribution, mRNA and protein expression were not affected by the mutation. Mitochondrial abnormalities are a common feature in PD. To determine whether mitochondrial function is compromised in mutant cells, a detailed bioenergetic assessment was carried out on both G2019S cell models. An increase in basal and oligomycin inhibited respiration rates, reduced mitochondrial membrane potential and cellular ATP levels was observed for G2019S fibroblasts with similar changes observed in the neuroblastoma G2019S model. Respiratory rates and membrane potential were restored with LRRK2 kinase inhibition. Our data is consistent with reversable uncoupling of oxidative phosphorylation. Investigating transcriptional levels of mitochondrial uncoupling proteins (UCP) identified a G2019S dependent increase in UCP2 and 4 in fibroblasts and SHSY5Y cells. Upstream of this transcriptional event, an interaction between LRRK2 and the negative regulator of PGC1α expression, HDAC5 was investigated for both the wild type and G2019S protein. We have identified a role for endogenous LRRK2 in regulating mitochondrial bioenergetics with a kinase dependent gain of function for the G2019S mutation consistent with partial uncoupling of oxidative phosphorylation. LRRK2 G2019S enhanced the HDAC5 association which may be responsible for increased PGC1α expression and the downstream UCP transcription linked with the observed mitochondrial phenotype

    Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma.

    Get PDF
    Neuroblastoma (NB), although rare, accounts for 15% of all paediatric cancer mortality. Unusual among cancers, NBs lack a consistent set of gene mutations and, excluding large-scale chromosomal rearrangements, the genome seems to be largely intact. Indeed, many interesting features of NB suggest that it has little in common with adult solid tumours but instead has characteristics of a developmental disorder. NB arises overwhelmingly in infants under 2 years of age during a specific window of development and, histologically, NB bears striking similarity to undifferentiated neuroblasts of the sympathetic nervous system, its likely cells of origin. Hence, NB could be considered a disease of development arising when neuroblasts of the sympathetic nervous system fail to undergo proper differentiation, but instead are maintained precociously as progenitors with the potential for acquiring further mutations eventually resulting in tumour formation. To explore this possibility, we require a robust and flexible developmental model to investigate the differentiation of NB's presumptive cell of origin. Here, we use Xenopus frog embryos to characterise the differentiation of anteroventral noradrenergic (AVNA) cells, cells derived from the neural crest. We find that these cells share many characteristics with their mammalian developmental counterparts, and also with NB cells. We find that the transcriptional regulator Ascl1 is expressed transiently in normal AVNA cell differentiation but its expression is aberrantly maintained in NB cells, where it is largely phosphorylated on multiple sites. We show that Ascl1's ability to induce differentiation of AVNA cells is inhibited by its multi-site phosphorylation at serine-proline motifs, whereas overexpression of cyclin-dependent kinases (CDKs) and MYCN inhibit wild-type Ascl1-driven AVNA differentiation, but not differentiation driven by a phospho-mutant form of Ascl1. This suggests that the maintenance of ASCL1 in its multiply phosphorylated state might prevent terminal differentiation in NB, which could offer new approaches for differentiation therapy in NB.This work was supported by a grant from the UK Neuroblastoma Society (A.P., L.A.W. and T.D.P.). C.J.T. and L.A.W. are supported by the intramural research program of the National Cancer Institute, National Institutes of Health. L.A.W. is an NIH-OxCam Scholar. L.J.A.H. is supported by a UK Medical Research Council Doctoral Training Award.This is the final version of the article. It first appeared from The Company of Biologists via http://dx.doi.org/10.1242/dmm.01863

    Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons

    Get PDF
    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP. Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies

    Screening for chemical modulators for LRRK2

    Get PDF
    After the discovery of leucine-rich repeat kinase 2 (LRRK2) as a risk factor for sporadic Parkinson's disease (PD) and mutations in LRRK2 as a cause of some forms of familial PD, there has been substantial interest in finding chemical modulators of LRRK2 function. Most of the pathogenic mutations in LRRK2 are within the enzymatic cores of the protein; therefore, many screens have focused on finding chemical modulators of this enzymatic activity. There are alternative screening approaches that could be taken to investigate compounds that modulate LRRK2 cellular functions. These screens are more often phenotypic screens. The preparation for a screen has to be rigorous and enable high-throughput accurate assessment of a compound's activity. The pipeline to beginning a drug screen and some LRRK2 inhibitor and phenotypic screens will be discussed

    Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases

    Get PDF
    Mutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics. We employ a combination of phosphoproteomics, genetics, and pharmacology to unambiguously identify a subset of Rab GTPases as key LRRK2 substrates. LRRK2 directly phosphorylates these both in vivo and in vitro on an evolutionary conserved residue in the switch II domain. Pathogenic LRRK2 variants mapping to different functional domains increase phosphorylation of Rabs and this strongly decreases their affinity to regulatory proteins including Rab GDP dissociation inhibitors (GDIs). Our findings uncover a key class of bona-fide LRRK2 substrates and a novel regulatory mechanism of Rabs that connects them to PD

    LRRK2 deficiency induced mitochondrial Ca2+ efflux inhibition can be rescued by Na+/Ca2+/Li+ exchanger upregulation

    Get PDF
    Variants of leucine-rich repeat kinase 2 (lrrk2) are associated with an increased risk in developing Parkinson’s disease (PD). Mitochondrial dysfunction and specifically mitochondrial Ca2+ handling has been linked to the pathogenesis of PD. Here we describe for the second time a mitochondrial Ca2+ efflux deficiency in a model displaying alterations in a PD-associated risk protein. LRRK2 deletion, inhibition and mutations led to an impaired mitochondrial Ca2+ extrusion via Na+/Ca2+/Li+ exchanger (NCLX) which in turn lowered mitochondrial permeability transition pore (PTP) opening threshold and increased cell death. The mitochondrial membrane potential was found not to be the underlying cause for the Ca2+ extrusion deficiency. NCLX activity was rescued by a direct (phosphomimetic NCLX mutant) and indirect (protein kinase A) activation which in turn elevated the PTP opening threshold. Therefore, at least two PD-associated risk protein pathways appear to converge on NCLX controlling mitochondrial Ca2+ extrusion and therefore mitochondrial health. Since mitochondrial Ca2+ overload has been described in many neurological disorders this study warrants further studies into NCLX as a potential therapeutic target

    Translational approaches to restoring mitochondrial function in Parkinson's disease

    Get PDF
    There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents has been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarize previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI Spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients. Parkinson's disease is a common, relentlessly progressive neurodegenerative disorder. The pathological hallmark is loss of dopaminergic neurons in the substantia nigra. The resulting motor presentation includes rest tremor, bradykinesia and rigidity but the importance of non-motor symptoms such as cognitive impairment and depression is increasingly recognized, too. Currently available dopaminergic treatment often only addresses the motor impairment partially. This review will summarize our current knowledge about mitochondrial dysfunction as a key target for disease-modifying treatment for PD. We will also provide an update on mitochondrial readouts in PD patients, namely imaging and putative mitochondrial biomarkers, which may become highly relevant in the context of future drug trials. This article is protected by copyright. All rights reserved

    Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically?

    Get PDF
    Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes
    • …
    corecore