124 research outputs found

    Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Get PDF
    An optimized hybrid planar heterojunction (PHJ) of small molecule organic solar cells (SM-OSCs) based on copper phthalocyanine (CuPc) as donor and fullerene (C60) as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL), also known as hole extraction layer (HEL). A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc), fill factor (FF), and lifetime in this work compared to monolayer of ABL

    Gender Differences in the Relationships between Perceived Stress, Eating Behaviors, Sleep, Dietary Risk, and Body Mass Index

    Get PDF
    Background: Obesity is a growing epidemic among university students, and the high levels of stress reported by this population could contribute to this issue. Singular relationships between perceived stress; engagement in restrained, uncontrolled, and emotional eating; sleep; dietary risk; and body mass index (BMI) have been reported in the current body of literature; however, these constructs interact with each other, and the complex relationships among them are infrequently examined. Therefore, the aim of the present study was to explore the complex relationships between these constructs using mediation and moderation analyses stratified by gender. Methods: A cross-sectional study, enrolling university students from the United States (U.S.), the Netherlands, South Korea, Malaysia, Ireland, Ghana, and China, was conducted between October 2020 and January 2021 during the COVID-19 pandemic. Perceived stress; maladaptive eating behaviors including restrained, uncontrolled, and emotional eating; sleep duration and quality; dietary risk; and BMI were assessed using validated questionnaires, which were distributed through an online platform. Results: A total of 1392 students completed the online survey (379 male, 973 female, and 40 who self-identified as “other”). Uncontrolled and emotional eating mediated the relationship between perceived stress and dietary risk for both males and females; higher sleep quality weakened this relationship among female students but not males. Emotional eating mediated the relationship between perceived stress and BMI for both males and females, but higher sleep quality weakened this relationship only among females. Conclusions: Our findings suggest that students in higher education are likely to benefit from interventions to reduce uncontrolled and emotional eating. Programs that improve sleep quality, especially during highly stressful periods, may be helpful

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations

    Get PDF
    Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on the available evidence on the species׳ pharmacology and safety, we highlight ways in which their therapeutic potential can be properly harnessed for possible integration into the country׳s healthcare system. Materials and methods: Ethnobotanical information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants used in diabetes management, in which the place of use and/or sample collection was identified as Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches. Results: The hypoglycemic effect of over a hundred out of the 115 plants reviewed in this paper is backed by preclinical experimental evidence, either in vivo or in vitro. One-third of the plants have been studied for their mechanism of action, while isolation of the bioactive constituent(s) has been accomplished for twenty three plants. Some plants showed specific organ toxicity, mostly nephrotoxic or hepatotoxic, with direct effects on the levels of some liver function enzymes. Twenty eight plants have been identified as in vitro modulators of P-glycoprotein and/or one or more of the cytochrome P450 enzymes, while eleven plants altered the levels of phase 2 metabolic enzymes, chiefly glutathione, with the potential to alter the pharmacokinetics of co-administered drugs. Conclusion: This review, therefore, provides a useful resource to enable a thorough assessment of the profile of plants used in diabetes management so as to ensure a more rational use. By anticipating potential toxicities or possible herb–drug interactions, significant risks which would otherwise represent a burden on the country׳s healthcare system can be avoided

    Investigation of Various Active Layers for Their Performance on Organic Solar Cells

    No full text
    The theoretical mechanism of open-circuit voltages (VOC) in OSCs based on various small molecule organic materials is studied. The structure under investigation is simple planar heterojunction (PHJ) by thermal vacuum evaporation deposition. The various wide band gaps of small molecule organic materials are used to enhance the power conversion efficiency (PCE). The donor materials used in the device include: Alpha-sexithiophene (α-6T), Copper(II) phthalocyanine (CuPc), boron subnaphthalocyanine chloride (SubNc) and boron Subphthalocyanine chloride (SubPc). It is combined with fullerene or SubPc acceptor material to obtain a comprehensive understanding of the charge transport behavior. It is found that the VOC of the device is largely limited by charge transport. This was associated with the space charge effects and hole accumulation. These results are attributed to the improvement of surface roughness and work function after molybdenum trioxide (MoO3) is inserted as an anode buffer layer

    The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells

    No full text
    The properties of perovskite solar cells (PSCs) fabricated using various solvents was studied. The devices had an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/CH3NH3PbI3 (fabricated by using various solvents)/fullerene (C60)/bathocuproine (BCP)/silver (Ag) structure. The solvents used were dimethylformamide (DMF), γ-butyrolactone (GBL), dimethyl sulfoxide (DMSO), a mixture of DMSO and DMF (1:1 v/v), and a mixture of DMSO and GBL (DMSO: GBL, 1:1 v/v), respectively. The power conversion efficiency (PCE) of the device fabricated using DMF is zero, which is attributed to the poor coverage of CH3NH3PbI3 film on the substrate. In addition, the PCE of the device made using GBL is only 1.74% due to the low solubility of PbI2 and CH3NH3I. In contrast, the PCE of the device fabricated using the solvents containing DMSO showed better performance. This is ascribed to the high solubilization properties and strong coordination of DMSO. As a result, a PCE of 9.77% was obtained using a mixed DMSO:GBL solvent due to the smooth surface, uniform film coverage on the substrate and the high crystallization of the perovskite structure. Finally, a mixed DMSO: DMF:GBL (5:2:3 v/v/v) solvent that combined the advantages of each solvent was used to fabricate a device, leading to a further improvement of the PCE of the resulting PSC to 10.84%

    Crystalline Phase Segregation of Quantum-Dots-Passivated CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Film via Argon Plasma Treatment

    No full text
    In this study, a composite perovskite film composed of lead cesium triiodide (CsPbI3) quantum dots (QDs) and methylammonium lead iodide (CH3NH3PbI3; MAPbI3) was proposed. The CsPbI3 QDs prepared by hot-injecting were used as an anti-solvent in precursors to passivate the surface of this composite perovskite film. The further argon (Ar) plasma treatment improves the surface of the film. The effects of the powers from 100 to 200 W on the composite perovskite film structure, chemical element composition, and optical properties were studied. The experimental results demonstrate that the CsPbI3 QDs passivation boosts the ultraviolet light absorption (350–450 nm) and inhibits the formation of the PbI2 phase. Furthermore, Ar plasma treatment effectively improved CsPbI3 QDs passivation on MAPbI3 film. The powers lower than 140 W cause C=O bonds to dissolve and coordination bonds to form between OA carboxyl moieties and undercoordinated Pb2+ ions. At 160 and 140 W, the obvious crystal phase segregation and a decrease in light absorption are observed, respectively. Meanwhile, the strong bombardment of Ar ions at higher than 160 W causes the severe degradation of MAPbI3 film
    corecore