1,761 research outputs found

    Yet another breakdown point notion: EFSBP - illustrated at scale-shape models

    Full text link
    The breakdown point in its different variants is one of the central notions to quantify the global robustness of a procedure. We propose a simple supplementary variant which is useful in situations where we have no obvious or only partial equivariance: Extending the Donoho and Huber(1983) Finite Sample Breakdown Point, we propose the Expected Finite Sample Breakdown Point to produce less configuration-dependent values while still preserving the finite sample aspect of the former definition. We apply this notion for joint estimation of scale and shape (with only scale-equivariance available), exemplified for generalized Pareto, generalized extreme value, Weibull, and Gamma distributions. In these settings, we are interested in highly-robust, easy-to-compute initial estimators; to this end we study Pickands-type and Location-Dispersion-type estimators and compute their respective breakdown points.Comment: 21 pages, 4 figure

    Non-intubated uniportal anatomical lung resection: a propensity score matched analysis shows faster recovery is possible even in the early experience

    Get PDF
    OBJECTIVES: Non-intubated uniportal video-assisted thoracoscopic surgery (VATS) has gained considerable interest for major lung resections in recent years. However, characteristics of the learning curve and whether benefits can be shown in the early experience of adapting this technique have hitherto not been investigated ...postprin

    Self-ordered TiO2 quantum dot array prepared via anodic oxidation

    Get PDF
    The template-based methods belong to low-cost and rapid preparation techniques for various nanostructures like nanowires, nanotubes, and nanodots or even quantum dots [QDs]. The nanostructured surfaces with QDs are very promising in the application as a sensor array, also called 'fluorescence array detector.' In particular, this new sensing approach is suitable for the detection of various biomolecules (DNA, proteins) in vitro (in clinical diagnostics) as well as for in vivo imaging

    Artemisinin Attenuates Lipopolysaccharide-Stimulated Proinflammatory Responses by Inhibiting NF-κB Pathway in Microglia Cells

    Get PDF
    Microglial activation plays an important role in neuroinflammation, which contributes to neuronal damage, and inhibition of microglial activation may have therapeutic benefits that could alleviate the progression of neurodegeneration. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit NF-κB activation. In this study, the inhibitory effects of artemisinin on the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-stimulated primary microglia. Our results show that artemisinin significantly inhibited LPS-induced production of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1) and nitric oxide (NO). Artemisinin significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) and increased the protein levels of IκB-α, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. Artemisinin treatment significantly inhibited basal and LPS-induced migration of BV-2 microglia. Electrophoretic mobility shift assays revealed increased NF-κB binding activity in LPS-stimulated primary microglia, and this increase could be prevented by artemisinin. The inhibitory effects of artemisinin on LPS-stimulated microglia were blocked after IκB-α was silenced with IκB-α siRNA. Our results suggest that artemisinin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The data provide direct evidence of the potential application of artemisinin for the treatment of neuroinflammatory diseases

    Triptolide (TPL) Inhibits Global Transcription by Inducing Proteasome-Dependent Degradation of RNA Polymerase II (Pol II)

    Get PDF
    Triptolide (TPL), a key biologically active component of the Chinese medicinal herb Tripterygium wilfordii Hook. f., has potent anti-inflammation and anti-cancer activities. Its anti-proliferative and pro-apoptotic effects have been reported to be related to the inhibition of Nuclear Factor κB (NF-κB) and Nuclear Factor of Activated T-cells (NFAT) mediated transcription and suppression of HSP70 expression. The direct targets and precise mechanisms that are responsible for the gene expression inhibition, however, remain unknown. Here, we report that TPL inhibits global gene transcription by inducing proteasome-dependent degradation of the largest subunit of RNA polymerase II (Rpb1) in cancer cells. In the presence of proteosome inhibitor MG132, TPL treatment causes hyperphosphorylation of Rpb1 by activation of upstream protein kinases such as Positive Transcription Elongation Factor b (P-TEFb) in a time and dose dependent manner. Also, we observe that short time incubation of TPL with cancer cells induces DNA damage. In conclusion, we propose a new mechanism of how TPL works in killing cancer. TPL inhibits global transcription in cancer cells by induction of phosphorylation and subsequent proteasome-dependent degradation of Rpb1 resulting in global gene transcription, which may explain the high potency of TPL in killing cancer

    Solution Structure and Dynamics of the I214V Mutant of the Rabbit Prion Protein

    Get PDF
    Background: The conformational conversion of the host-derived cellular prion protein (PrP C) into the disease-associated scrapie isoform (PrP Sc) is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs). Various single-point mutations in PrP C s could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrP C (RaPrP C) and various mutants would be of great help to understand the ability of RaPrP C to be resistant to TSE agents. Methodology/Principal Findings: We determined the solution structure of the I214V mutant of RaPrP C (91–228) and detected the backbone dynamics of its structured C-terminal domain (121–228). The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. Conclusions/Significance: Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints fo

    Classification of gluteal muscle contracture in children and outcome of different treatments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gluteal muscle contracture (GMC) is a clinical syndrome due to multiple etiologies in which hip movements may be severely limited. The aim of this study was to propose a detailed classification of GMC and evaluate the statistical association between outcomes of different management and patient conditions.</p> <p>Methods</p> <p>One hundred fifty-eight patients, who were treated between January 1995 and December 2004, were reviewed at a mean duration of follow-up of 4.8 years. Statistical analyses were performed using X<sup>2 </sup>and Fisher's exact tests.</p> <p>Results</p> <p>Non-operative management (NOM), as a primary treatment, was effective in 19 of 49 patients (38.8%), while operative management was effective in all 129 patients, with an excellence rating of 83.7% (108/129). The outcome of NOM in level I patients was significantly higher than in level II and III patients (<it>P </it>< 0.05). The results of NOM and operative management in the child group were better than the adolescent group (<it>P </it>< 0.05). Complications in level III were more than in level II.</p> <p>Conclusion</p> <p>NOM was more effective in level I patients than in level II and III patients. Operative management was effective in patients at all levels, with no statistical differences between levels or types. We recommend NOM as primary treatment for level I patients and operative management for level II and III patients. Either NOM or operative management should be carried out as early as possible.</p

    Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum

    Get PDF
    This study was designed to systematically evaluate the influence of pH and serum on the transfection process of chitosan-DNA complexes, with the objective of maximizing their efficiency. The hydrodynamic diameter of the complexes, measured by dynamic light scattering (DLS), was found to increase with salt and pH from 243 nm in water to 1244 nm in PBS at pH 7.4 and aggregation in presence of 10% serum. The cellular uptake of complexes into HEK 293 cells assessed by flow cytometry and confocal fluorescent imaging was found to increase at lower pH and serum. Based on these data, new methodology were tested and high levels of transfection (>40%) were achieved when transfection was initiated at pH 6.5 with 10% serum for 8-24 h to maximize uptake and then the media was changed to pH 7.4 with 10% serum for an additional 24-40 h period. Cytotoxicity of chitosan/DNA complexes was also considerably lower than Lipofectamine. Our study demonstrates that the evaluation of the influence of important parameters in the methodology of transfection enables the understanding of crucial physicochemical and biological mechanisms which allows for the design of methodologies maximising transgene expression

    Motor coordination: when two have to act as one

    Get PDF
    Trying to pass someone walking toward you in a narrow corridor is a familiar example of a two-person motor game that requires coordination. In this study, we investigate coordination in sensorimotor tasks that correspond to classic coordination games with multiple Nash equilibria, such as “choosing sides,” “stag hunt,” “chicken,” and “battle of sexes”. In these tasks, subjects made reaching movements reflecting their continuously evolving “decisions” while they received a continuous payoff in the form of a resistive force counteracting their movements. Successful coordination required two subjects to “choose” the same Nash equilibrium in this force-payoff landscape within a single reach. We found that on the majority of trials coordination was achieved. Compared to the proportion of trials in which miscoordination occurred, successful coordination was characterized by several distinct features: an increased mutual information between the players’ movement endpoints, an increased joint entropy during the movements, and by differences in the timing of the players’ responses. Moreover, we found that the probability of successful coordination depends on the players’ initial distance from the Nash equilibria. Our results suggest that two-person coordination arises naturally in motor interactions and is facilitated by favorable initial positions, stereotypical motor pattern, and differences in response times
    corecore