103 research outputs found

    Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions

    Get PDF
    We obtain full description of eigenvalues and eigenvectors of composition operators Cϕ : A (R) → A (R) for a real analytic self map ϕ : R → R as well as an isomorphic description of corresponding eigenspaces. We completely characterize those ϕ for which Abel’s equation f ◦ ϕ = f + 1 has a real analytic solution on the real line. We find cases when the operator Cϕ has roots using a constructed embedding of ϕ into the so-called real analytic iteration semigroups.(1) The research of the authors was partially supported by MEC and FEDER Project MTM2010-15200 and MTM2013-43540-P and the work of Bonet also by GV Project Prometeo II/2013/013. The research of Domanski was supported by National Center of Science, Poland, Grant No. NN201 605340. (2) The authors are very indebted to K. Pawalowski (Poznan) for providing us with references [26,27,47] and also explaining some topological arguments of [10]. The authors are also thankful to M. Langenbruch (Oldenburg) for providing a copy of [29].Bonet Solves, JA.; Domanski, P. (2015). Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions. Integral Equations and Operator Theory. 81(4):455-482. https://doi.org/10.1007/s00020-014-2175-4S455482814Abel, N.H.: Determination d’une function au moyen d’une equation qui ne contient qu’une seule variable. In: Oeuvres Complètes, vol. II, pp. 246-248. Christiania (1881)Baker I.N.: Zusammensetzung ganzer Funktionen. Math. Z. 69, 121–163 (1958)Baker I.N.: Permutable power series and regular iteration. J. Aust. Math. Soc. 2, 265–294 (1961)Baker I.N.: Permutable entire functions. Math. Z. 79, 243–249 (1962)Baker I.N.: Fractional iteration near a fixpoint of multiplier 1. J. Aust. Math. Soc. 4, 143–148 (1964)Baker I.N.: Non-embeddable functions with a fixpoint of multiplier 1. Math. Z. 99, 337–384 (1967)Baker I.N.: On a class of nonembeddable entire functions. J. Ramanujan Math. Soc. 3, 131–159 (1988)Baron K., Jarczyk W.: Recent results on functional equations in a single variable, perspectives and open problems. Aequ. Math. 61, 1–48 (2001)Belitskii G., Lyubich Y.: The Abel equation and total solvability of linear functional equations. Studia Math. 127, 81–97 (1998)Belitskii G., Lyubich Yu.: The real analytic solutions of the Abel functional equation. Studia Math. 134, 135–141 (1999)Belitskii G., Tkachenko V.: One-Dimensional Functional Equations. Springer, Basel (2003)Belitskii G., Tkachenko V.: Functional equations in real analytic functions. Studia Math. 143, 153–174 (2000)Bonet J., Domański P.: Power bounded composition operators on spaces of analytic functions. Collect. Math. 62, 69–83 (2011)Bonet J., Domański P.: Hypercyclic composition operators on spaces of real analytic functions. Math. Proc. Camb. Philos. Soc. 153, 489–503 (2012)Bracci, F., Poggi-Corradini, P.: On Valiron’s theorem. In: Proceedings of Future Trends in Geometric Function Theory. RNC Workshop Jyväskylä 2003, Rep. Univ. Jyväskylä Dept. Math. Stat., vol. 92, pp. 39–55 (2003)Contreras, M.D.: Iteración de funciones analíticas en el disco unidad. Universidad de Sevilla (2009). (Preprint)Contreras M.D., Díaz-Madrigal S., Pommerenke Ch.: Some remarks on the Abel equation in the unit disk. J. Lond. Math. Soc. 75(2), 623–634 (2007)Cowen C.: Iteration and the solution of functional equations for functions analytic in the unit disc. Trans. Am. Math. Soc. 265, 69–95 (1981)Cowen C.C., MacCluer B.D.: Composition operators on spaces of analytic functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)Domański, P.: Notes on real analytic functions and classical operators. In: Topics in Complex Analysis and Operator Theory (Winter School in Complex Analysis and Operator Theory, Valencia, February 2010). Contemporary Math., vol. 561, pp. 3–47. Am. Math. Soc., Providence (2012)Domański P., Goliński M., Langenbruch M.: A note on composition operators on spaces of real analytic functions. Ann. Polon. Math. 103, 209–216 (2012)P. Domański M. Langenbruch 2003 Language="En"Composition operators on spaces of real analytic functions Math. Nachr. 254–255, 68–86 (2003)Domański P., Langenbruch M.: Coherent analytic sets and composition of real analytic functions. J. Reine Angew. Math. 582, 41–59 (2005)Domański P., Langenbruch M.: Composition operators with closed image on spaces of real analytic functions. Bull. Lond. Math. Soc. 38, 636–646 (2006)Domański P., Vogt D.: The space of real analytic functions has no basis. Studia Math. 142, 187–200 (2000)Fuks D.B., Rokhlin V.A.: Beginner’s Course in Topology. Springer, Berlin (1984)Greenberg M.J.: Lectures on Algebraic Topology. W. A. Benjamin Inc., Reading (1967)Hammond, C.: On the norm of a composition operator, PhD. dissertation, Graduate Faculty of the University of Virginia (2003). http://oak.conncoll.edu/cnham/Thesis.pdfHandt T., Kneser H.: Beispiele zur Iteration analytischer Funktionen. Mitt. Naturwiss. Ver. für Neuvorpommernund Rügen, Greifswald 57, 18–25 (1930)Heinrich T., Meise R.: A support theorem for quasianalytic functionals. Math. Nachr. 280(4), 364–387 (2007)Karlin S., McGregor J.: Embedding iterates of analytic functions with two fixed points into continuous group. Trans.Am. Math. Soc. 132, 137–145 (1968)Kneser H.: Reelle analytische Lösungen der Gleichung φ(φ(x))=ex{\varphi(\varphi(x))=e^x} φ ( φ ( x ) ) = e x und verwandter Funktionalgleichungen. J. Reine Angew. Math. 187, 56–67 (1949)Königs, G.: Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. Ecole Norm. Sup. (3) 1, Supplément, 3–41 (1884)Kuczma M.: Functional Equations in a Single Variable. PWN-Polish Scientific Publishers, Warszawa (1968)Kuczma M., Choczewski B., Ger R.: Iterative Functional Equations. Cambridge University Press, Cambridge (1990)Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Milnor, J.: Dynamics in One Complex Variable. Vieweg, Braunschweig (2006)Schröder E.: über iterierte Funktionen. Math. Ann. 3, 296–322 (1871)Shapiro J.H.: Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer, New York (1993)Shapiro, J.H.: Notes on the dynamics of linear operators. Lecture Notes. http://www.mth.msu.edu/~hapiro/Pubvit/Downloads/LinDynamics/LynDynamics.htmlShapiro, J.H.: Composition operators and Schröder functional equation. In: Studies on Composition Operators (Laramie, WY, 1996), Contemp. Math., vol. 213, pp. 213–228. Am. Math. Soc., Providence (1998)Szekeres G.: Regular iteration of real and complex functions. Acta Math. 100, 203–258 (1958)Szekeres G.: Fractional iteration of exponentially growing functions. J. Aust. Math. Soc. 2, 301–320 (1961)Szekeres G.: Fractional iteration of entire and rational functions. J. Aust. Math. Soc. 4, 129–142 (1964)Szekeres G.: Abel’s equations and regular growth: variations on a theme by Abel. Exp. Math. 7, 85–100 (1998)Trappmann H., Kouznetsov D.: Uniqueness of holomorphic Abel function at a complex fixed point pair. Aequ. Math. 81, 65–76 (2011)Viro, O.: 1-manifolds. Bull. Manifold Atlas. http://www.boma.mpim-bonn.mpg.de/articles/48 (a prolonged version also http://www.map.mpim-bonn.mpg.de/1-manifolds#Differential_structures )Walker P.L.: A class of functional equations which have entire solutions. Bull. Aust. Math. Soc. 39, 351–356 (1988)Walker P.L.: The exponential of iteration of e x −1. Proc. Am. Math. Soc. 110, 611–620 (1990)Walker P.L.: On the solution of an Abelian functional equation. J. Math. Anal. Appl. 155, 93–110 (1991)Walker P.L.: Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57, 723–733 (1991

    Heavy Quark Photoproduction in Ultra-peripheral Heavy Ion Collisions

    Get PDF
    Heavy quarks are copiously produced in ultra-peripheral heavy ion collisions. In the strong electromagnetic fields, c c-bar and b b-bar are produced by photonuclear and two-photon interactions; hadroproduction can occur in grazing interactions. We present the total cross sections, quark transverse momentum and rapidity distributions, as well as the Q Q-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing.Comment: Minor changes to satisfy referees and typo fixes; 52 pages including 17 figure

    The parent?infant dyad and the construction of the subjective self

    Get PDF
    Developmental psychology and psychopathology has in the past been more concerned with the quality of self-representation than with the development of the subjective agency which underpins our experience of feeling, thought and action, a key function of mentalisation. This review begins by contrasting a Cartesian view of pre-wired introspective subjectivity with a constructionist model based on the assumption of an innate contingency detector which orients the infant towards aspects of the social world that react congruently and in a specifically cued informative manner that expresses and facilitates the assimilation of cultural knowledge. Research on the neural mechanisms associated with mentalisation and social influences on its development are reviewed. It is suggested that the infant focuses on the attachment figure as a source of reliable information about the world. The construction of the sense of a subjective self is then an aspect of acquiring knowledge about the world through the caregiver's pedagogical communicative displays which in this context focuses on the child's thoughts and feelings. We argue that a number of possible mechanisms, including complementary activation of attachment and mentalisation, the disruptive effect of maltreatment on parent-child communication, the biobehavioural overlap of cues for learning and cues for attachment, may have a role in ensuring that the quality of relationship with the caregiver influences the development of the child's experience of thoughts and feelings

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    A Geomagnetic Smallsat Observatory for Operation in a 200 km Altitude Low Earth Orbit

    Get PDF
    An altitude of 200 km can improve the accuracy of measurements of the earth\u27s crustal fields and low altitude ionospheric currents. However, atmospheric drag at this altitude requires altitude maintenance to provide useful orbital lifetime. In this study, a small-satellite conceptual design is developed to meet those requirements. The box shaped satellite basic configuration consists of science and electronics module mounted above a propulsion module. Overall satellite body size is 0.71 m x 0.71 m x 1.58 m long. The science and electronics module accommodates an 8 meter long deployable, non-magnetic boom carrying a scalar magnetometer, a star imager and a compact spherical coil magnetometer. Also mounted in this module are the modular electronic boxes, the NiH2 battery, a charged particle detector, and a position receiver utilizing both the GPS and the GLONASS systems. Major design drivers are the need to minimize the \u27ram\u27 area to reduce the amount of propellant for altitude maintenance, coupled with the requirement to accommodate the satellite within the volume and mass constraints of the Pegasus XL launch vehicle. With the chosen configuration the \u27ram\u27 area is reduced to 0.5 m2, using one flight proven propellant tank. The total wet mass of the satellite is 264 kg including margin

    Mapping of Earth\u27s Magnetic Field with the Ørsted Satellite

    No full text
    The Danish Ørsted satellite will carry three science experiments with the objectives of mapping the Earth\u27s magnetic field and measuring the charged particle environment from a 7801an altitude sun-synchronous polar orbit. The science data generated during the planned one year mission will be used to improve geomagnetic models and study the auroral phenomena. Comprehensive and accurate mapping of the geomagnetic field every 5 to 10 years is of particular interest to geophysical studies. As such, the Ørsted science data return will complement the Magsat (1979-80) and Aristoteles (=2000) mission objectives. Two magnetometers will be mounted on an 8 meter long deployable boom together with a star imager for determining the absolute pointing vector for the CSC fluxgate magnetometer. Particle detectors are mounted in the main body of the satellite. Position determination will be provided by a multi-channel GPS receiver. The main body of the 50 kg satellite is shaped as a box with modular electronic boxes and includes sub-systems in areas of Power, Attitude Control, Communication, Command & Data Handling, Structure and Mechanisms. The Ørsted satellite is planned to be launched as an auxiliary payload on either Ariane 4 or a Delta launcher in early 1995

    Development of the Ørsted Satellite Project

    No full text
    The Danish Ørsted satellite will carry four science experiments into an elliptical, polar, low earth orbit. Objectives are to map the Earth’s magnetic field, measure the charged particle environment and collect occultation data. The science data from the 14 month mission will improve geomagnetic models study the auroral phenomena and obtain atmospheric profiles. 75 scientific groups in 17 countries have responded to an announcement of opportunity to analyze the Ørsted data. A triaxial fluxgate magnetometer aligned with a star imager and an Overhauser magnetometer are mounted on an 8 meter long deployable boom. The science payload also includes six charged particle detectors mounted in the satellite body. The extended boom provides gravity-gradient passive altitude control. Active altitude control is maintained using magnetorquer coils. Position is determined by redundant GPS receivers. The satellite body weighs 60 kg and is 680mm X 450mm X 340mm. Modular electronic boxes accommodate all electronics except for the two GPS receivers and the star-imager electronics, which are located in special boxes. The Ørsted satellite will be launched as an auxiliary payload on a Delta II launch vehicle from Vandenberg Air force Base, California, together with the P91-1/Argos satellite in early 1996. The Ørsted control center, science data center and three ground stations form the ground segment

    Well logging of elements Si, Al, Fe and Ca in civil engineering

    No full text
    corecore