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Abstract. We obtain full description of eigenvalues and eigenvectors
of composition operators Cϕ : A (R) → A (R) for a real analytic self
map ϕ : R → R as well as an isomorphic description of corresponding
eigenspaces. We completely characterize those ϕ for which Abel’s equa-
tion f ◦ ϕ = f + 1 has a real analytic solution on the real line. We find
cases when the operator Cϕ has roots using a constructed embedding of
ϕ into the so-called real analytic iteration semigroups.
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1. Introduction and Preliminaries

Let ϕ : R → R be a non-constant real analytic map and let A (R) be the
space of real analytic functions defined on R. Each symbol ϕ : R → R defines
a composition operator Cϕ : A (R) → A (R) by Cϕ(f) := f ◦ ϕ, f ∈ A (R).
When A (R) is endowed with its natural locally convex topology (see below),
Cϕ is a continuous linear operator on A (R). The first purpose of this article
is to determine the eigenvalues and eigenvectors of composition operators
Cϕ : A (R) → A (R).

Of course, this is just to find a solution f of the equation

Cϕ(f) = λf for λ ∈ C. (1)

This is a very classical topic. The equation appeared probably for the first
time already in 1871 in a paper of Schröder [38] and was partially solved in
1884 in a paper of Königs [33] also for real analytic functions. That is why
(1) is often called the Schröder equation. There is an impressive bibliography
of the subject (see [34, Chapter 6], [35, Chapter 9] and citations therein or a
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survey paper [8, Sec. 8], as well papers on the holomorphic case [18,40,41])
but, in spite of extensive literature inquires, we could not find any known
complete solution of the problem in our setting. The first main result of the
paper provides such a full solution describing also corresponding eigenspaces
(later on we also describe the eigenfunctions). In the rest of the article we
denote id (x) = x, x ∈ R, and, for a map ϕ : R → R, we write ϕ[0] = id and
ϕ[n] for the n-times composition of ϕ, n ∈ N.

Theorem A. Let ϕ : R → R be a real analytic map. Then the map
Cϕ : A (R) → A (R) has the following set of eigenvalues:
(a) C \ {0} whenever either ϕ > id and the set of critical points of ϕ is

bounded from above or ϕ < id and the set of critical points is bounded
from below—in this case every eigenspace is topologically isomorphic to
the space A (T) of real analytic functions on the unit circle T;

(b) {(ϕ′(u))n : n = 0, 1, 2, . . . } whenever ϕ[2] has exactly one fixed point u
and one of the following cases hold:

• 0 < |ϕ′(u)| < 1,
• 1 < |ϕ′(u)| and ϕ has no critical points

—in this case eigenspaces are one-dimensional of the form span{fn}
where f is an eigenvector of Cϕ with the eigenvalue ϕ′(u);

(c) {1,−1} whenever ϕ[2] = id �= ϕ—in this case the whole space is a direct
sum of eigenspaces and each of them is isomorphic to the space A+(R)
of even real analytic functions on R;

(d) {1} whenever ϕ=id—in this case the whole space A (R) is an eigenspace;
(e) {1} in all other cases—the eigenspace is one dimensional and consists

of constant functions.
In cases (a) and (b) the closed linear span of all eigenspaces is equal to A (R)
if and only if ϕ has no critical points.

The fact that for ϕ with a fixed point u the eigenvalues λ are powers
of ϕ′(u) was already known to Königs (comp. [32, Satz 3]) who also proved
local existence in the case (b). Since under the assumption of (b) in that case
the attraction basin of the fixed point u is the whole R, then this particular
case above is known (see for instance [34, Th. 6.4, 6.5], comp. [32, Satz 1]).
The case (c) is also known see [34, Th. 6.10]. Part (a) is closely related to the
so-called Abel equation

Cϕ(f) = f + 1. (2)

In fact, any solution f to the Abel equation produces a solution g, g(x) :=
exp(log(λ)f(x)) of the Schröder equation for any λ �= 0 see [32, p. 57]. The
part (a) of Theorem A above is a consequence of our second main result
characterizing when the Abel equation is solvable in A (R) (in view of the
above remarks this case contains the main novelty in Theorem A). Note that
the isomorphic classification of eigenspaces as well as the last sentence of
Theorem A seems to be also new.

Theorem B. Let ϕ : R → R be a real analytic map. Then the Abel equation

f(ϕ(x)) = f(x) + 1 for every x ∈ R
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has a real analytic solution f : R → C if and only if ϕ has no fixed points
and the set of critical points of ϕ is bounded from above (in case ϕ > id ) or
from below (in case ϕ < id ). Moreover, in that case there is a real analytic
solution f0 : R → R such that its set of critical points is bounded from above
(in case ϕ > id ) or from below (in case ϕ < id ) and for every such f0 each
solution f of the Abel equation is of the form f(x) = f0(x) + g ◦ f0(x), where
g : R → R is an arbitrary 1-periodic real analytic function.

The Abel equation is another classical subject. It was probably men-
tioned for the first time by Abel [1] in his note published posthumously
(comp. also [45]) when a relation between f and f0 as above was given in
the case of strictly increasing solutions of the Abel equation with some addi-
tional assumptions on g. There is also a broad literature about the equation
in various function classes [34, Chapter 7] or [8, Sec. 9]. There are also recent
papers [45,46], and papers on the holomorphic case, see for instance [15–18].
So far the Abel equation was solved in real analytic functions globally on
R for ϕ = exp by Kneser (see [32, p. 64], comp. also a series of papers of
Walker [48–51] for ϕ(x) = exp(x) − 1 or ϕ(x) = exp(bx) inspired partially
by numerical analysis) and there was a characterization of real analytic dif-
feomorphisms ϕ for which the Abel equation is solvable (iff ϕ has no fixed
point, see [10, Main Theorem], comp. [11, Th. 3.6]). In [9, Th. 1.4, Cor. 4.2]
it was proved that a necessary condition for real analytic solvability of the
Abel equation is that all compact sets K ⊂ R are wandering, i.e., that there
is ν ∈ N such that for n,m ∈ N, |n −m| > ν holds ϕ[n](K) ∩ ϕ[m](K) = ∅.
This condition is strictly weaker than the condition we found.

The motivation of Kneser [32] for solving the Abel equation comes from
his problem of finding an iteration root of exp, i.e., of a real analytic function
r such that r[2] = exp. It is a folklore that if f is an invertible solution
of the Abel or Schröder equations (λ > 0) then G(t, x) = f−1(f(x) + t)
or G(t, x) = f−1(λtf(x)), respectively, is a so-called real analytic iteration
semigroup in which ϕ embeds, i.e., G : (R+ ∪ {0}) × R → R is real analytic
satisfying the following conditions

G(t+ s, x) = G(t,G(s, x)), G(n, x) = ϕ[n](x), forn = 0, 1, . . . .

Clearly, r(x) = G(1/2, x) is the required root. We prove the third main result
of the paper:

Theorem C. A real analytic map ϕ : R → R embeds into a real analytic
iteration semigroup whenever ϕ has no critical points and either ϕ has no
fixed points or ϕ[2] has exactly one fixed point u and 0 < ϕ′(u) �= 1. In
particular in that case there exist roots of the operator Cϕ of arbitrary order.

The notion of an iteration semigroup appears (and it is extensively
studied) in [35, Ch. 9] and its group analogue in [34, Ch. 9] but the concept
itself is much older, see for instance, [29, p. 194–195]. So far it was known that
every real analytic diffeomorphism ϕ without fixed points embeds into a real
analytic iteration semigroup [11, Th. 2.20], but if real analytic ϕ has no fixed
and critical points, then there are real analytic iteration roots of arbitrary
order [11, Th. 2.20]. On the other hand, there is no real analytic iteration
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root for ϕ(x) = exp(x) − 1 [34, Th. 15.13], for more information see a series
of papers of Baker [2–7] and a papers of Szekeres [42–44]. For iteration roots
we also have a broad literature: see [34, Chapter 15], [8, Sec. 2].

The composition operator is definitely one of the most natural linear
operators of analysis and there is an extensive literature on that subject: see
the monographs in case of spaces of holomorphic functions [19,39] and the
papers on a real analytic case [13,14,20–24]. For a literature on the space of
real analytic functions see a recent survey [20]. The paper is closely related to
questions of real analytic (nonlinear) dynamics of one variable see [11] which
in turn is connected with its holomorphic counterpart [37]. For the theory
of one-dimensional manifolds we refer to [47] although the results are very
classical and known much earlier. For functional analytic tools see [36].

Now, we present the organization of the paper in which we look at
the considered problems from the functional analytic or operator theoretical
point of view. We discuss in Sect. 2 the case when the self map ϕ has fixed
points. Our main result is Theorem 2.9, that gives a complete picture of
the eigenvalues, eigenvectors and eigenspaces of the composition operator
Cϕ : A (R) → A (R) when ϕ has fixed points. Section 3 studies the case
when ϕ has no fixed points and Theorem 3.11 gives several characterizations
of those self maps ϕ : R → R such that the Abel equation (or a specific
Schröder equation) has a real analytic solution. The method used is inspired
by the method used in [10] (comp. [9]) via the orbit space R/ϕ of the real
analytic map ϕ. Our approach allows us to give in Sect. 4. Theorem 4.2
a characterization of fixed point free ϕ which embeds into a real analytic
iteration semigroup and give some sufficient conditions for in the case of ϕ
with fixed points (Proposition 4.3). This implies an extension of Kneser’s [32]
and Belitskii and Tkachenko’s [11, Th. 2.20] results about the existence of
real analytic functions g such that g ◦ g = ϕ.

In what follow N0 denotes the set of natural numbers N and 0. The open
interval in R with extreme points a < b is denoted by (a, b). Recall that we
denote by id : R → R the identity map id (x) = x and by I : A (R) → A (R)
the identity operator on A (R). The ball in the complex plane of center z
and radius r > 0 is denoted by B(z, r). If T is a continuous linear operator
on a locally convex space E, its kernel and image are denoted respectively
by kerT and im T . The point spectrum σp(T ) of T is the set of all λ ∈ C

such that T − λI is not injective. Elements of σp(T ) are called eigenvalues of
T . The spectrum σ(T ) of T is the set of all λ ∈ C such that T − λI is not
a topological isomorphism from E onto E. By the open mapping theorem
which works for surjective endomorphisms of A (R) (see [20]) λ ∈ σ(Cϕ) if
and only if Cϕ − λI : A (R) → A (R) is bijective.

A description of the natural topology on A (R), that goes back to Mar-
tineau, is given, for instance, in [25]. The space A (R) has very good prop-
erties: it is nuclear, separable, complete, satisfies the closed graph theorem
and the uniform boundedness principle, but surprisingly it has no Schauder
basis by [25]. To be precise, the space A (R) is equipped with the unique lo-
cally convex topology such that for any U ⊂ C open, R ⊂ U , the restriction
map R : H(U) −→ A (R) is continuous and for any compact set K ⊂ R
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the restriction map r : A (R) −→ H(K) is continuous. We endow the space
H(U) of holomorphic functions on U with the compact-open topology and
the space H(K) of germs of holomorphic functions on K with its natural
locally convex inductive limit topology:

H(K) = ind
n∈N

H∞(Un),

where (Un)n∈N is a basis of C
d-neighbourhoods of K. Martineau proved that

there is exactly one topology on A (R) satisfying the condition above. For our
purposes, it is important to recall that a sequence (fn)n∈N in A (R) tends
to f if and only if there is a complex neighbourhood W of R such that each
fn and f extend to W holomorphically and fn → f uniformly on compact
subsets of W . The topology of A(J) for an open interval J in R is defined
analogously. A long survey on spaces of real analytic functions with a very
precise description of their topology is contained [20].

The following easy result is included for references in the rest of the
paper.

Proposition 1.1. Let ϕ : R → R be a non-constant real analytic map.
1. 0 is never an eigenvalue of Cϕ. In particular, Cϕ is injective.
2. 1 is always an eigenvalue of Cϕ and the constant functions are eigen-

vectors.
3. Cϕ is surjective if and only if it is bijective if and only if ϕ : R → R

is bijective and its inverse is real analytic, i.e. ϕ is a real analytic dif-
feomorphism.

4. 0 ∈ σ(Cϕ) if and only if ϕ is not a real analytic diffeomorphism.

Proof. (1) If ϕ is not constant then ϕ(R) is an interval. So if Cϕ(g) = 0, then
g|ϕ(R) ≡ 0 and g ≡ 0. Statement (2) is trivial.

(3) Let ϕ : R → R be a non-constant analytic map. If ϕ is a real analytic
diffeomorphism, it is easy to see that Cϕ is bijective. If Cϕ is surjective, there
is f ∈ A (R) such that f(ϕ(x)) = x for all x ∈ R. This implies right away
that ϕ is injective in R. As it is continuous, the image ϕ(R) is an interval
J and ϕ is strictly increasing or decreasing with a continuous inverse ϕ−1.
Clearly f(y) = ϕ−1(y) for each y ∈ J . This implies that ϕ−1 is real analytic
in J and it is the restriction to J of the real analytic f defined on the whole
R. If J is not the whole real line, let a be an extreme of the interval. By
continuity, ϕ−1(y) tends to +∞ or −∞, and ϕ−1 cannot be the restriction
of f ∈ A (R) to J . Summarizing, ϕ is bijective from R onto itself, and the
inverse is real analytic. Now (4) is a direct consequence of (3). �

We conclude this section recalling when composition operators on A (R)
are open, see [22].

Theorem 1.2. Let ϕ : R → R be a real analytic map.
(a) im Cϕ is dense in A (R) if and only if ϕ has no critical points.
(b) The following conditions are equivalent for any non-constant ϕ:

• ϕ is surjective;
• Cϕ : A (R) → A (R) is an isomorphism onto its image;



460 J. Bonet and P. Domański IEOT

• im Cϕ is closed.

Proof. (a) If ϕ has no critical points, then it is a diffeomorphism onto im ϕ =
(a, b), where a could be −∞ and b could be +∞. Hence Cϕ is an isomorphism
of A (a, b) onto A (R). Since polynomials are dense in A (a, b) then A (R) is
dense in A (a, b) thus Cϕ(A (R)) is dense in A (R). On the other hand if
ϕ′(x) = 0, then for any f ∈ im Cϕ holds f ′(x) = 0. Thus im Cϕ ⊂ ker δ′

x,
where δ′

x ∈ A (R)′, δ′
x(g) := g′(x).

(b) For every non-constant ϕ : R → R the map Cϕ : A (R) → A (R) is
injective. If ϕ is surjective, then it is semi-proper, i.e., for any compact set
K ⊂ R there is a compact set L ⊂ R such that ϕ(L) = K. Then the result
follows from [22, Th. 3.1]. �

2. Self Map with Fixed Points

First, we describe precisely eigenvalues and eigenvectors in the case when ϕ
has a fixed point. As it was explained in the introduction much about this
case is known. Nevertheless we present the results and some proofs for the
convenience of the reader, since the results are scattered in the literature. A
description when eigenspaces span densely A (R) and the isomorphic classi-
fication of the eigenspaces seems to be new.

Lemma 2.1. Let ϕ : R → R be a real analytic map with a fixed point u ∈ R.
Then either
(a) ϕ[2] = id or
(b) There is a convergent sequence (xn)n in R such that for each n �= k we

have xn �= xk and there is m such that ϕ[m](xn) = xk or ϕ[m](xk) = xn.

Proof. We distinguish several cases depending on the value of ϕ′(u).
Case 1. If |ϕ′(u)| < 1, then the fixed point u is attractive and we can

find a sequence (xn)n of pairwise distinct points converging to u and such
that ϕ(xn) = xn+1. Thus (b) in the statement is satisfied.

Case 2. If |ϕ′(u)| > 1, then the fixed point u is repelling and there is
ε such that |ϕ′(y)| > 1 for each y ∈ (u − ε, u + ε). This implies that either
ϕ′(y) > 1 for each y ∈ (u− ε, u+ ε) or ϕ′(y) < −1 for each y ∈ (u− ε, u+ ε).
Select a point x1 ∈ ϕ((u − ε, u + ε)) and define (xn)n the sequence of the
iterates of x1 by the inverse ϕ−1. It is easy to see that the iteration can
be accomplished and that (xn) is a sequence of pairwise different points
converging to u for which condition (b) in the statement holds.

Case 3. If ϕ′(u) = 1, there are two possible subcases. The first one is
that ϕ′(x) = 1 for each x ∈ R. In this case ϕ(x) = x for each x ∈ R. On
the other hand, if we are not in this case, there is a neighbourhood of u
in which ϕ′ does not coincide with 1. Otherwise, since ϕ is real analytic, it
would follow ϕ(x) = x for each x ∈ R. Now we have either ϕ′(y) > 1 for each
y ∈ (u, u + ε) or 0 < ϕ′(y) < 1 for each y ∈ (u, u + ε) for some ε > 0, and
similarly at the other side (u − ε, u). Proceeding as in cases 1 and 2 in the
side where we have the inequality, we can find the desired sequence (xn) for
which statement (b) holds.
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Case 4. In case ϕ′(u) = −1, then (ϕ[2])′(u) = 1, and we can proceed as
in Case 3. �

Let us observe that the map f �→ (x �→ xf(x)) is an isomorphism of
the space A+(R) of even real analytic functions onto the space A−(R) of odd
real analytic functions.

Proposition 2.2. Let ϕ : R → R be a real analytic map with a fixed point
u ∈ R. The following holds:

(i) If ϕ = id , then Cϕ = I on A (R) and 1 is the only eigenvalue of Cϕ.
(ii) If ϕ[2] = id but ϕ �= id , then Cϕ has only two eigenvalues 1 and −1

and ϕ′(u) = −1. In this case each f ∈ A (R) can be decomposed as
f = f1 + f2, where f1 (resp. f2) is an eigenvalue with eigenvector 1
(resp. −1). In this case both eigenspaces are isomorphic to the space of
even real analytic functions A+(R) on R.

(iii) If ϕ[2] �= id , then 1 is an eigenvalue of Cϕ with one dimensional eigen-
space consisting of constant functions.

Proof. The proof of part (i) is trivial. In (ii), it is enough to set f1(x) :=
(f(x) + f(ϕ(x)))/2 and f2(x) := (f(x) − f(ϕ(x)))/2, x ∈ R. It is clear that
the decomposition is unique and using this decomposition one proves that no
λ ∈ C \ {1,−1} is an eigenvalue.

In order to prove that ϕ′(u) = −1 in part (ii), we assume without loss
of generality that u = 0. We observe that the graph of ϕ has to be sym-
metric with respect to the line y = x. Moreover, differentiating the equation
ϕ(ϕ(x)) = x we get ϕ′(u) · ϕ′(u) = 1, so ϕ′(u) = 1 or ϕ′(u) = −1. In the
first case, since ϕ is not the identity map but increasing around u, there is a
neighbourhood of u where ϕ(x) never takes value x except for u. For instance,
for some ε > 0 and every x ∈ (−ε, 0) we have x < ϕ(x) < 0. Such a function
cannot be symmetric with respect to the line y = x. A similar proof works
for the case ϕ(x) < x. We have proved that ϕ′(u) = −1.

Since ϕ[2] = id , ϕ is a real analytic diffeomorphism of R onto R so it has
no critical points. Thus for every x ∈ R we have ϕ′(x) < 0, in particular, ϕ has
the only one fixed point u and limx→+∞ ϕ(x) = −∞ and limx→−∞ ϕ(x) =
+∞. Define

ψ : R → R, ψ(x) :=
x− ϕ(x)

2
.

The map ψ is strictly increasing, it has no critical points and it is surjective
since

ψ′(x) =
1
2

(1 − ϕ′(x)) > 0, lim
x→+∞ψ(x) = +∞, lim

x→−∞ψ(x) = −∞.

Hence Cψ is an isomorphism of A (R).
Let f ∈ A (R) be even then

Cψ(f) ◦ ϕ = f

(
ϕ(x) − x

2

)
= f

(
x− ϕ(x)

2

)
= Cψ(f).

Analogously for odd f we have Cψ(f) ◦ ϕ = −Cψ(f). We have proved
that Cψ is an isomorphism of the space of even/odd real analytic functions
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A+(R)/A−(R) onto the eigenspace of Cϕ corresponding to the eigenvalue
+1/− 1.

If the assumption of (iii) holds, we can apply Lemma 2.1 to find a
convergent sequence (xn)n in R of such that for each n �= k we have xn �= xk
and there is m such that ϕ[m](xn) = xk or ϕ[m](xk) = xn. Clearly Cϕ(f) = f
holds if f is constant. Any other real analytic function g such that Cϕ(g) = g
would be constant on the convergent sequence of pairwise different points
(xn)n. This implies that g is constant. �

Proposition 2.3. Let ϕ : R → R be a real analytic map with a fixed point
u ∈ R. If −1 is an eigenvalue of Cϕ, then ϕ[2] = id .

Proof. Let f ∈ A (R) be an eigenvector of Cϕ for the eigenvalue −1. Then
f(ϕ(x)) = −f(x) for each x ∈ R. Proceeding by contradiction, if the conclu-
sion does not hold, we apply Lemma 2.1 to find a convergent sequence of pair-
wise different points (xn)n such that f(xn) = f(x1) or f(xn) = −f(x1). Pass-
ing to a subsequence, it follows that the real analytic function f is constant.
As f(ϕ(x)) = −f(x), this constant value must be 0; a contradiction. �

Proposition 2.4. Let ϕ : R → R be a real analytic map with a fixed point
u ∈ R such that ϕ[2] �= id . Then the only possible eigenvalues λ of Cϕ are
of the form λ = (ϕ′(u))n for some n ∈ N. All of them have at most a one
dimensional eigenspace consisting of functions f with zero of order n at u.

Proof. The argument is similar to the standard proof of the Königs’ theorem
in the holomorphic case [39, Ch. 6.1], see also [32, Satz 3] and [35, Th. 4.6.3].
The fact that eigenspaces are at most one dimensional follows from [34, Th.
6.1]. �

Proposition 2.5. If ϕ : R → R is a real analytic function with at least two
fixed points, then 1 is the only eigenvalue of Cϕ : A (R) → A (R).

Proof. If ϕ[2] = id , then ϕ has more than one fixed point if and only if
ϕ = id .

Assume that ϕ[2] �= id . By Propositions 2.3 and 1.1, −1 and 0 cannot
be eigenvalues for Cϕ.By Proposition 2.4, all eigenvalues are real.

Assume that λ �= 0, |λ| �= 1 is an eigenvalue of Cϕ with a corresponding
eigenvector f . Moreover, let ϕ(u) = u, ϕ(w) = w, u < w, and ϕ(x) �= x for
all x ∈ (u,w). By Proposition 2.4, f(u) = f(w) = 0.

There are two cases: either ϕ(x) > x for all x ∈ (u,w) or ϕ(x) < x for
all x ∈ (u,w). We consider only the first case since the proof for the other is
analogous. If ϕ(x) < w for all x ∈ (u,w) then ϕ′(u) ≥ 1 and 0 ≤ ϕ′(w) ≤ 1.
By Proposition 2.4,

λ = (ϕ′(u))n = (ϕ′(w))m for some n,m ≥ 1.

Hence ϕ′(u) = ϕ′(w) = 1 and λ = 1; a contradiction. Thus ϕ(x) > w for
some x ∈ (u,w). Define v0 to be the smallest number v ∈ (u,w) such that
ϕ(v) = w. There is a sequence (xn)n∈N ⊂ (u,w) such that

ϕ[n](xn) = v for every n = 1, 2, . . . .
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Clearly, u < xn+1 < xn for n = 1, 2, . . . and

f(xn) = (1/λ)f(ϕ(xn)), f(x1) = (1/λ)f(v) = (1/λ2)f(w) = 0.

We have proved that f(xn) = 0 for every n ∈ N and so f ≡ 0; a contradiction.
�

Theorem 2.6. Let ϕ : R → R be a real analytic function with a fixed point u
such that 0 < |ϕ′(u)| < 1. Then either

(a) ϕ[2] has at least two fixed points and then 1 is the only eigenvalue of Cϕ;
(b) or (ϕ′(u))n is an eigenvalue for every n ∈ N.

In case (b) for every eigenfunction f of Cϕ with the eigenvalue ϕ′(u) the
eigenspace corresponding to the eigenvalue (ϕ′(u))n is equal to lin {fn} and
f can be chosen real valued. Moreover, the closed linear span of all eigenspaces
is equal to im Cf , i.e. it is equal to A (R) if and only if ϕ has no critical points
(or, equivalently f has no critical points). If ϕ is surjective, then the closed
linear span of all eigenspaces is isomorphic to A (R).

Proof. Define Ω to be the basin of attraction of u, i.e.,

Ω :=
{
x : lim

n→∞ϕ[n](x) = u
}
.

Clearly ϕ−1(Ω) = Ω and Ω ⊃ B(u, ε) for some ε > 0. This easily implies that
Ω is open. Let z �∈ Ω but (u, z) ⊂ Ω. Clearly, ϕ(z) �∈ Ω and the open interval
joining u = ϕ(u) and ϕ(z) contains only points of Ω. We have proved that if
Ω0 is the connected component of Ω containing u then ϕ(∂Ω0) ⊂ ∂Ω0. It is
easily seen that at least one point in ∂Ω0 is fixed for either ϕ or ϕ[2].

Summarizing, we have shown that either ϕ[2] has at least two fixed
points or the whole real line is the basin of attraction for u. Thus the state-
ment (a) follows from Propositions 2.5. (comp. the proof of Proposition 2.7
(a) below).

Now, we consider the second case. It is easy to see that if (ϕ′(u))n is
an eigenvalue of Cϕ with an eigenvector f , then (ϕ′(u))nk is an eigenvalue
with an eigenvector fk. Accordingly, it suffices to prove the result for n = 1.
The construction is now like [32, Satz 1] (comp. [34, Th. 6.4], [35, 4.6.1], [39,
Ch. 6.1]) for a locally defined solution. The extension to the whole line goes
by a standard argument (see [34, Th. 6.5]). The statement (b) is thus known
(comp. Proposition 2.4). However, the part about the form of the closed linear
span of eigenspaces seems to be new and we prove it below. Observe that in
[12, Th. 4.5] it is proved that if ϕ is a diffeomorphism with several fixed points
on which |ϕ′| �= 1 then all eigenspaces are finite dimensional (even for more
general operators).

Since ϕ′(u) is real the real part of every eigenvector is also an eigenvec-
tor. It is clear that the closed linear span of all the eigenspaces is equal to
lin {fn : n ∈ N} for any eigenvector f of Cϕ corresponding to the eigenvalue
ϕ′(u). Since polynomials are dense in A (R) we have for real valued f :

lin {fn : n ∈ N} = im Cf .
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Now, we show that ϕ has a critical point if and only if f has a critical point.
Indeed, if ϕ has a critical point x then differentiating

f(ϕ(x)) = ϕ′(u)f(x) (3)

at x we get f ′(x) = 0. On the other hand, f ′(u) �= 0 (Proposition 2.4) and
if ϕ has no critical points, then again differentiating (3) at x we get that
f ′(x) = 0 if and only if f ′(ϕ(x)) = 0. Thus if f ′(x) = 0, then f ′ vanishes on
the whole orbit of x which tends to u and it is infinite since ϕ is injective,
so f ′ ≡ 0 and f is constant. This contradicts (3) since ϕ′(u) �= 1. Hence, by
Theorem 1.2, im Cf = A (R) if and only if ϕ has no critical points.

If ϕ is surjective, then every point x ∈ R has an infinite backward orbit
{ϕ[−n](x) : n ∈ N}. Moreover, since f(u) = 0, f ′(u) �= 0, it follows that there
exists x+, x− such that f(x+) > 0, f(x−) < 0. Additionally,

f
(
ϕ[−n](x+)

)
=

1
(ϕ′(u))n

f(x+), f
(
ϕ[−n](x−)

)
=

1
(ϕ′(u))n

f(x−)

thus f is surjective. By Theorem 1.2,

Cf : A (R) → im Cf = im Cf

is a topological isomorphism. �

Proposition 2.7. Let ϕ : R → R be a real analytic function with a fixed point
u such that 1 < |ϕ′(u)|. The following holds
(a) If ϕ[2] has at least two fixed points, then 1 is the only eigenvalue of Cϕ;
(b) ϕ′(x) = 0 for some x ∈ R and ϕ[2] has only one fixed point, then 1 is

the only eigenvalue of Cϕ
(c) If ϕ′(x) �= 0 for each x ∈ R and ϕ[2] has only one fixed point, then

(ϕ′(u))n is an eigenvalue for every n ∈ N with a real valued eigenfunc-
tion. Moreover, in that case, the closed linear span of all eigenspaces is
equal to A (R) and every real valued eigenfunction f for an eigenvalue
ϕ′(u) is a diffeomorphism of R onto R.

Proof. (a) If ϕ[2] has at least two fixed points, then we can apply Proposition
2.5 to conclude that 1 is the only eigenvalue of Cϕ[2] . This implies that the only
possible eigenvalues of Cϕ are 1 and −1. However, ϕ[2] �= id since 1 < |ϕ′(u)|,
hence, by Proposition 2.3, −1 is not an eigenvalue of Cϕ.

(b) The proof requires some preparation. We consider first the case when
there is x0 ∈ R such that ϕ′(x0) = 0, ϕ′(u) > 1 and ϕ has exactly one fixed
point. We have

ϕ(x) < x for all x < u, ϕ(x) > x for all x > u.

It is easy to see that there is a sequence (xn)n converging to u such that
ϕ(xn+1) = xn, n ∈ N, and ϕ(x1) = x0. Now, if f ∈ A (R) is an eigenvector
of Cϕ with an eigenvalue λ �= 0, we have f(ϕ(x)) = λf(x), x ∈ R. Thus
f ′(ϕ(x))ϕ′(x) = λf ′(x), x ∈ R. Since ϕ′(x0) = 0, we have f ′(x0) = 0. Eval-
uating now at x = x1, we get f ′(x0)ϕ′(x1) = f ′(ϕ(x1))ϕ′(x1) = λf ′(x1),
hence f ′(x1) = 0. Proceeding by recurrence, f ′(xn) = 0 for each n ∈ N. This
implies that f ′ ≡ 0 so f is constant. Therefore 1 is the only eigenvalue of Cϕ.
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We are ready for the proof of (b). Suppose that ϕ satisfies ϕ′(x0) = 0
for some x0 ∈ R and that ϕ[2] has only one fixed point. Then ϕ[2] satisfies the
assumptions of the proof just given, but ϕ[2] �= id . So 1 is the only eigenvalue
of Cϕ[2] and, by Proposition 2.3, −1 is not the eigenvalue of Cϕ. So the proof
of part (b) is complete.

(c) Suppose now that ϕ′(x) �= 0 for each x ∈ R and ϕ[2] has exactly
one fixed point. Since (ϕ[2])′(u) > 1, we conclude that ϕ[2](x) > x if x > u
and ϕ[2](x) < x if x < u. From this it follows easily that ϕ[2] is surjective,
hence it is a diffeomorphism. Its inverse ϕ[−2] has exactly one fixed point and
0 < |(ϕ−1)′(u)| < 1. Thus ϕ is a diffeomorphism of R. We can apply Theorem
2.6 to ϕ−1 to conclude that (ϕ′(u))n is an eigenvalue of Cϕ for every n ∈ N.

Let f be an eigenvector of Cϕ for the eigenvalue ϕ′(u) and of Cϕ−1 for
the eigenvalue (ϕ′(u))−1. By Proposition 2.4, f ′(u) �= 0. Observe that by the
proof of Theorem 2.6, u is an attracting fixed point for ϕ−1 with the attraction
basin equal to R. Moreover, f ′(ϕ(x)) = 0 if and only if f ′(x) = 0. Thus if f ′

has a critical point x, then it is zero on the full orbit {ϕ[k](x) : k ∈ Z} of ϕ
(or ϕ−1). The point u is a condensation point of such an orbit so f ′ ≡ 0; this
contradicts f(ϕ(y)) = ϕ′(u)f(y) for ϕ′(u) �= 1. We have proved that f has
no critical points.

We may take f real valued by taking the real part of any eigenfunction.
Since f(u) = 0 and f ′(u) �= 0, f takes both positive and negative values.
Since |ϕ′(u)| > 1 and

f(ϕ[k](x)) = (ϕ′(u))kf(x) for k ∈ N

it follows that f is surjective on R. We have proved that f : R → R is a
diffeomorphism.

Finally, the eigenspace for (ϕ′(u))n is equal to lin {fn}. The linear span
of all eigenspaces is equal to the image of the subspace of polynomials in
A (R) by the topological isomorphism Cf : A (R) → A (R) so dense in A (R)
(see Theorem 1.2). �

Let us note that from Theorem 2.6 and Proposition 2.7 the values
(ϕ′(u))n are sometimes eigenvalues and sometimes they are not. Surprisingly,
they are always elements of the spectrum by a result that is proved with a
technique due to Hammond [28, Prop. 4.1].

Proposition 2.8. Let ϕ : R → R be a real analytic function and let Cϕ :
A (R) → A (R) be the associated composition operator. If u is a fixed point
of ϕ such that |ϕ′(u)| �= 1, 0, then ϕ′(u)n ∈ σ(Cϕ) for each n ∈ N0.

Proof. If n = 0, then ϕ′(u)n = 1 ∈ σp(Cϕ) by Proposition 1.1. Fix n ∈ N.
Proceeding by contradiction, assume that there is f ∈ A (R) such that

f(ϕ(x)) − ϕ′(u)nf(x) = (x− u)n, x ∈ R.

Since |ϕ′(u)| �= 1, f(u) = 0. Suppose by induction that f (k)(u) = 0, 0 ≤ k ≤
j − 1. Taking the j-th derivative in the equality above, j < n, we get

dj

dxj
(f(ϕ(x))

∣∣
x=u

− ϕ′(u)nf (j)(u) =
dj

dxj
((x− u)n)

∣∣
x=u

= 0.
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The first term consists of ϕ′(u)jf (j)(u) plus some other summands involving
lower order derivatives of f at u, that vanish by the induction hypothesis.
Therefore

0 = ϕ′(u)j(1 − ϕ′(u)n−j)f (j)(u),

hence f (j)(u) = 0. Now taking the n-th derivative we reach a contradiction:

0 �= dn

dxn
((x− u)n)

∣∣
x=u

=
dn

dxn
(f(ϕ(x)))

∣∣
x=u

− ϕ′(u)nf (n)(u)

= ϕ′(u)nf (n)(u) − ϕ′(u)nf (n)(u) = 0. �

Summarizing, we have obtained complete description of eigenvalues and
the dimension of the corresponding eigenspaces for all Cϕ whenever ϕ has a
fixed point as follows (so it completes the proof of Theorem A in the fixed
point case).

Theorem 2.9. Let ϕ : R → R be a real analytic function with a fixed point u
and let us consider the map Cϕ : A (R) → A (R).

(a) If ϕ′(u) = 1, then 1 is the only eigenvalue and
(i) either ϕ = id and in this case the eigenspace is equal to A (R)
(ii) or ϕ �= id and the eigenspace is one dimensional.

(b) If ϕ′(u) = −1, then
(i) either ϕ[2] = id but ϕ �= id and in this case there are two eigen-

values ±1 and A (R) is a direct sum of two eigenspaces
(ii) or ϕ[2] �= id , 1 is the only eigenvalue and its eigenspace is one-

dimensional.
(c) If ϕ′(u) = 0, then 1 is the only eigenvalue and its eigenspace is one-

dimensional.
(d) If 0 < |ϕ′(u)| < 1, then

(i) either ϕ[2] has at least two fixed points and then 1 is the only eigen-
value and its eigenspace is one-dimensional

(ii) or ((ϕ′(u))n)n∈N is the sequence of eigenvalues and all of them
have one-dimensional eigenspaces.

(e) If 1 < |ϕ′(u)|, then
(i) either ϕ[2] has at least two fixed points or ϕ has a critical point

and then in both cases 1 is the only eigenvalue and its eigenspace
is one-dimensional

(ii) or ((ϕ′(u))n)n∈N is the sequence of eigenvalues and all of them
have one-dimensional eigenspaces.

Our results in this section permit us to determine the eigenvalues and
the eigenspaces of Cϕ for ϕ(x) = xs, s ∈ N, ϕ(x) = sin(x), ϕ(x) = ex− 1 and
ϕ(x) = arctan(x) among other examples.
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3. Self Map Without Fixed Points and the Abel Equation

Let ϕ : R → R be a real analytic function without a fixed point. Recall that
the Abel equation is the equation

f ◦ ϕ = f + 1.

Clearly, if ϕ has a fixed point, there is no solution of the Abel equations.
Observe that if F1 and F2 are two real analytic solutions of the Abel

equation F (ϕ(x)) = F (x) + 1, then f := F2 −F1 is a real analytic fixed point
of the composition operator Cϕ : A (R) → A (R).

First, we collect results about the relation between the solutions of the
Abel type equations and eigenvalues of Cϕ : A (R) → A (R). They are known
— see, for instance, [32, p. 57]:

Proposition 3.1. Let ϕ : R → R be a real analytic map such that the Abel
equation f ◦ϕ = f + 1 has a real analytic solution f0. Then each λ ∈ C \ {0}
is an eigenvalue of Cϕ : A (R) → A (R) and this operator has an infinite
dimensional eigenspace for the eigenvalue λ. Moreover, for every λ �= 0 there
is an eigenvector f which does not vanish at any point.

Proof. Observe first that the function f0 cannot be constant. Let p be a
periodic function with period 1 and define f := p ◦ f0. We have

Cϕ(f)(x) = f(ϕ(x)) = (p ◦ f0)(ϕ(x)) = p(f0(x) + 1) = p(f0(x)) = f(x).

Thus Cϕ(f) = f . The infinite dimensionality follows varying p. This settles
the case λ = 1. Taking a non-vanishing periodic function p we get the desired
non vanishing eigenvector.

Take now λ ∈ C \ {0, 1}. Select a complex number μ such that eμ = λ.
Set G(x) := exp(μf0(x)), x ∈ R (this is taken from [32, par. 1]). We have

Cϕ(G)(x) = G(ϕ(x)) = exp(μf0(ϕ(x)))

= exp(μ(f0(x) + 1)) = eμ exp(μf0(x)) = λG(x).

Hence G is an eigenvector of Cϕ with an eigenvalue λ.
If F ∈ A (R) is a fixed point of Cϕ (and there is an infinite dimensional

subspace of such functions), we get Cϕ(FG) = λFG. This implies that the
eigenspace of the eigenvector λ is also infinite dimensional. �

The following proposition is in fact an observation due to Kneser
[32, p. 57].

Proposition 3.2. Let ϕ : R → R be a real analytic map such that some
λ ∈ C\{0, 1} is an eigenvalue of Cϕ : A (R) → A (R) with a never vanishing
eigenvector f0 ∈ A (R). Then the Abel equation f ◦ ϕ = f + 1 has a real
analytic solution f .

Proof. Clearly f0 extends to a non vanishing holomorphic function on some
one-connected complex neighbourhood U of R. Thus f0(x) = exp(h(x)) for
some holomorphic function h on U (so the restriction of h to R is real an-
alytic). Select a complex number μ such that eμ = λ. Since f0(ϕ(x)) =
λf0(x), x ∈ R, we have:

exp(h(ϕ(x)) = exp(μ+ h(x)).
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Since λ �= 1 we have for some k ∈ Z

h(ϕ(x)) = h(x) + μ+ 2kπi, where μ+ 2kπi �= 0.

Then f, f(x) := 1
μ+2kπih(x), is the required solution of the Abel

equation. �

The next three lemmas prepare the proof of a necessary condition for
solvability of the Abel equation which is our crucial result. Let ϕ : R → R be
a continuous functions such that ϕ > id . We can define the lower hull ϕ̂ of
ϕ as follows:

ϕ̂(t) := inf{ϕ(s) : s ≥ t} = inf{ϕ(s) : t ≤ s ≤ ϕ(t)},
mϕ := inf{ϕ̂(t) : t ∈ R}.

Lemma 3.3. Let ϕ : R → R be a continuous function such that ϕ > id . The
function ϕ̂ : R → R is non-decreasing, continuous and ϕ̂(t) > t for every
t ∈ R. Thus mϕ exists (possibly = −∞) and ϕ̂(R) ⊃ (mϕ,+∞).

Proof. Only the continuity requires a proof. It is clearly enough to prove that
ϕ̂ is continuous on an arbitrary interval (a, b). Set B := max{ϕ(x)|x ∈ [a, b]}.
For each t ∈ (a, b), ϕ̂(t) = min{ϕ(s) : t ≤ s ≤ B}. Fix t0 ∈ (a, b). Let
s0 = min{s|t0 ≤ s ≤ B,ϕ(s) = ϕ̂(t0)}. If t0 < s0, there is r > 0 such that
a < t0 − r < t0 + r < s0 and ϕ(t) > ϕ(s0) for t ∈ (t0 − r, s0). In this case, it
is easy to see that ϕ̂(t) = ϕ(s0) for each t ∈ (t0 − r, s0) and ϕ̂ is continuous
at t0. Now, if t0 = s0, then ϕ̂(t0) = ϕ(t0). Given ε > 0, select δ > 0 such that
(t0 − δ, t0 + δ) ⊂ (a, b) and |ϕ(t) − ϕ(t0)| < ε when t ∈ (t0 − δ, t0 + δ). It is
now easy to see that ϕ̂(t0) − ε ≤ ϕ̂(t) ≤ ϕ̂(t0) + ε for each t ∈ (t0 − δ, t0 + δ),
and ϕ̂ is also continuous at t0 in this case. �

Lemma 3.4. Let ϕ : R → R be a continuous functions such that ϕ > id . For
every a > mϕ and every y ≥ a there is ŷ ∈ [a, ϕ̂(a)] such that y = ϕ[k](ŷ)for
some k ∈ N.

Proof. We define (use Lemma 3.3)

ψ : (mϕ,+∞) → R, ψ(z) := sup ϕ̂−1(z).

Since ϕ̂(z) > z, the supremum above exists for any z ∈ (mϕ,+∞) ⊂ ϕ̂(R).
Moreover, ϕ̂(ψ(z)) = ϕ(ψ(z)) = z, and so ψ(z) < z.

Let y ≥ a > mϕ, then we construct a decreasing sequence ψ[n](y) for
all n such that ψ[n−1](y) > mϕ. If this sequence is infinite and bounded from
below by a, it has a limit and

ϕ
(

lim
n
ψ[n](y)

)
= lim

n
ϕ
(
ψ[n](y)

)
= lim

n
ψ[n](y);

a contradiction since ϕ > id . Thus there is n ∈ N such that

ψ[n+1](y) < a ≤ ψ[n](y) and ŷ := ψ[n](y) = ϕ̂
(
ψ[n+1](y)

)
≤ ϕ̂(a)

by monotonicity of ϕ̂. �
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Lemma 3.5. Let λ ∈ C \ {0}, r ∈ C, ϕ : R → R be a real analytic function
satisfying ϕ > id . If there is a real analytic non-constant function f : R → C

which solves the equation:

f ◦ ϕ = λf + r,

then the set of critical points of ϕ is bounded from above; in particular, ϕ is
strictly increasing from some point on.

Remark 3.6. Of course, an analogous result holds for ϕ < id if the set of
critical points of ϕ is bounded from below.

Proof. We start with some claims.
Claim 1. If ϕ[n] has a critical point of order k at x0 (i.e., the derivative

has a zero of order k at x0), then f has a critical point of order k at x0.
Proof of the Claim 1. Since

f ◦ ϕ[n] = λnf + constant

we get

f (l)(x0) =
1
λn

dl

dxl

(
f ◦ ϕ[n]

)
(x0).

It is easily seen that for l = 1, . . . , k

dl

dxl

(
f ◦ ϕ[n]

)
(x0) = 0.

This completes the proof of Claim 1.
Claim 2. If for some x0 there is a sequence 0 ≤ n1 < n2 < · · · < nk of

natural numbers such that ϕ[nj ](x0) for j = 1, . . . , k are critical points of ϕ,
then ϕ[n] for n > nk has a critical point of order ≥ 2k − 1 at x0.

Proof of Claim 2. If ϕ has a critical point of order l at x and of order
m at ϕ(x), then ϕ[2] has a critical point of order ml+m+ l at x. Indeed, let
us take

ϕ(z) = ϕ(x) +
∞∑

j=l+1

aj(z − x)j , ϕ(w) = ϕ(ϕ(x)) +
∞∑

j=m+1

bj(w − ϕ(x))j .

Hence

ϕ[2](z) = ϕ(ϕ(x)) +
∞∑

j=m+1

bj

⎛
⎝ ∞∑
p=l+1

ap(z − x)p

⎞
⎠
j

= ϕ(ϕ(x)) +
∞∑

j=ml+m+l+1

cj(z − x)j .

Thus x is a critical point of order (ml + m + l + 1) − 1. Inductively we will
get Claim 2.

Now, we prove our Lemma. Let a > mϕ. Then by Lemma 3.4, for every
y ≥ a there is ŷ ∈ [a, ϕ̂(a)] such that

y = ϕ[n](ŷ) for some n ∈ N.
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If ϕ has infinitely many distinct critical points (xn)n∈N ⊂ [a,∞), then there
is a sequence (x̂n)n∈N ⊂ [a, ϕ̂(a)] such that

∀ n ∈ N ∃ kn ∈ N ϕ[kn](x̂n) = xn.

Case (a). There are infinitely many distinct points in the sequence
(x̂n)n∈N. By Claim 1, there are infinitely many distinct critical points of
f on [a, ϕ̂(a)]. Thus the set of critical points has an accumulation point and
thus f ′ ≡ 0; a contradiction.

Case (b). There is a point x̂ ∈ [a, ϕ̂(a)] and an infinite increasing se-
quence (kn) such that for all n ∈ N the number ϕ[kn](x̂) is a critical point of
ϕ. By Claim 2, for any m > kn the number x̂ is a critical point of ϕ[m] of
order ≥ 2n − 1. By Claim 1, f has a critical point x̂ of order ∞ so f ′ ≡ 0; a
contradiction. �

Now, we are ready to formulate our necessary condition for real analytic
solvability of the Abel equation (the condition turns out to be sufficient as
well). So far the best necessary condition for solvability of the Abel equation
is due to Belitskii and Lyubich [9, Th. 1.4]: all compact sets in R must be
wandering, i.e., for every compact K there is an integer ν such that for any
two n,m ∈ N such that |n−m| > ν the sets ϕ[n](K) and ϕ[m](K) are disjoint.
This condition is strictly weaker than our condition. For diffeomorphisms ϕ
the condition is equivalent with lack of fixed points but in general it only
implies that ϕ is fixed point free. It is known that for solvability in continuous
functions of all equations f ◦ ϕ = f + γ for every continuous function γ it is
necessary and sufficient that ϕ has no fixed points and ϕ is strictly increasing
on some set [c,+∞) (in case ϕ > id ) or on (−∞, c] (in case ϕ < id ), see
[9, Th. 1.9] or [11, Th. 2.3], nevertheless this condition is not necessary for
solvability in continuous functions of the Abel equation [11, Ex. 2.3].

Corollary 3.7. If ϕ has no fixed point but the set of critical points is unbounded
from above (if ϕ > id ) or from below (if ϕ < id ), then the only eigenvalue
of Cϕ : A (R) → A (R) is 1 and the corresponding eigenspace consists of
constant functions only. Moreover, the Abel equation f ◦ ϕ = f + 1 has no
real analytic solution f ∈ A (R).

Proof. We consider only the case ϕ > id —the other one is analogous. If
λ �= 1 then the eigenvectors cannot be constant. The result follows from
Lemma 3.5. �

Next part is devoted to the proof of sufficiency of our condition. The
method of the proof is “topological” in nature and inspired by [10]. In that
paper only the case of diffeomorphisms ϕ is considered. Transferring it to the
general real analytic functions ϕ required some new ideas.

Let ϕ : R → R be a real analytic map. Then for any x ∈ R we denote
by O(x) the full orbit of x via ϕ, i.e.,

O(x) := {y : ∃ k, l ∈ N : ϕ[k](x) = ϕ[l](y)}.
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The full orbits form a partition of R. The quotient topological space with
respect to that partition is denoted by R/ϕ and the corresponding (continu-
ous) canonical quotient map we denote by πϕ : R → R/ϕ. It is worth noting
that R/ϕ need not be Hausdorff. By Lemma 3.4 we get:

Corollary 3.8. Let ϕ : R → R be a real analytic map without fixed points.
Then R/ϕ is compact.

Proof. We consider only the case ϕ > id . Then for any w ∈ R its full orbit
O(w) is unbounded from above. By Lemma 3.4, there is z ∈ O(w) ∩ [a, ϕ̂(a)]
for any fixed a > mϕ. We have proved that πϕ maps continuously [a, ϕ̂(a)]
onto R/ϕ. This completes the proof by [26, 1.1.7.8]. �

Now, we study the natural manifold structure on R/ϕ. The next two
results are generalizations to the case of non-diffeomorphic ϕ of the method
presented by Belitskii and Lyubich in [10, Th. 3.1].

Lemma 3.9. Let ϕ : R → R be real analytic and ϕ > id . If the set of critical
points of ϕ is bounded from above, then R/ϕ is homeomorphic to the circle
T and there is a real analytic structure on R/ϕ which makes it diffeomorphic
to T and makes the canonical map πϕ : R → R/ϕ real analytic, such that its
set of critical points coincides with the set of critical points of all the maps
ϕ[n] for n ∈ N.

Proof. Assume that every critical point of ϕ is strictly smaller than a, in
particular ϕ is strictly increasing on [a,+∞). Hence for x ≥ a we have ϕ(x) =
ϕ̂(x). By Lemma 3.4, [x, ϕ(x)] intersects every full orbit. If a ≤ x < y < z <
ϕ(x) then x < ϕ[n](x) < ϕ[n](y) < ϕ[n](z) < ϕ[n+1](x) for every n ∈ N and
O(y) �= O(z). Moreover,

⋃
w∈(y,z)

O(w) =
⋃
k∈N

(
ϕ[k]

)−1
(⋃
n∈N

ϕ[n](y, z)

)

=
⋃
k∈N

(
ϕ[k]

)−1
(⋃
n∈N

(
ϕ[n](y), ϕ[n](z)

))

is an open set in R. Therefore πϕ((y, z)) is an open set.
We have proved that for every x ≥ a the map πϕ restricted to (x, ϕ(x))

is a homeomorphism onto an open set (clearly a Hausdorff one). Since every
pair of distinct full orbits O(y), O(z) is contained in one of these open sets
it follows that the whole space R/ϕ is Hausdorff. Summarizing, by Corollary
3.8, the space R/ϕ is a connected compact Hausdorff one dimensional locally
euclidean space, i.e., a connected compact manifold of dimension 1 without
boundary. By [47, Th. 3.2], R/ϕ is homeomorphic to the circle T.

Now, we define a real analytic structure on R/ϕ. For any x ≥ a we
define a chart

fx : πϕ((x, ϕ(x))) → (x, ϕ(x)), fx :=
(
πϕ|(x,ϕ(x))

)−1
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Take a ≤ x < y, O(x) �= O(y), then there is n ∈ N such that ϕ[n](x) < y <
ϕ[n+1](x). We consider πϕ((x, ϕ(x)) ∩ πϕ((y, ϕ(y)) then

fx [πϕ((x, ϕ(x)))∩πϕ((y, ϕ(y)))]=
(
x,
(
ϕ[n]

)−1

(y)
)

∪
((

ϕ[n]
)−1

(y), ϕ(x)
)
,

fy [πϕ((x, ϕ(x))) ∩ πϕ((y, ϕ(y)))] =
(
y, ϕ[n+1](x)

)
∪
(
ϕ[n+1](x), ϕ(y)

)
.

Therefore,

fy ◦ f−1
x

∣∣∣∣((ϕ[n])−1
(y),ϕ(x)

) = ϕ[n],

fy ◦ f−1
x

∣∣∣∣(x,(ϕ[n])−1
(y)
) = ϕ[n+1],

fx ◦ f−1
y

∣∣
(y,ϕ[n+1](x)) =

(
ϕ[n]|(x,ϕ(x))

)−1

,

fx ◦ f−1
y

∣∣∣(ϕ[n+1](x),ϕ(y)) =
(
ϕ[n+1]|(x,ϕ(x))

)−1

.

Since for every m ∈ N the map ϕ[m] has no critical points on [a,+∞) the
above maps are real analytic.

We have proved that the charts defined above form a real analytic atlas.
Moreover, the real analytic structure on R/ϕ must be diffeomorphic to the
standard one on T by [47, Th. 6.3].

Let us take any point y ∈ R then there is n ∈ N such that ϕ[n](y) > a
so some neighbourhood U of y is mapped via ϕ[n] into a neighbourhood of
ϕ[n](y), contained in (x, ϕ(x)) where x > a. Now, the map

fx ◦ πϕ : U → (x, ϕ(x)), fx ◦ πϕ|U = ϕ[n]|U
is real analytic on U . The map πϕ has a critical point in y if and only if ϕ[n]

has it. �
We will make use of the notion of the contractible map by which we

mean a map homotopic to a constant one.

Lemma 3.10. Let ϕ : R → R be a real analytic map such that R/ϕ is a real
analytic manifold with πϕ : R → R/ϕ real analytic. If d : R/ϕ → T is a
non-contractible real analytic map, then the Abel equation f ◦ ϕ = f + 1 has
a real analytic solution f on R with real values. The solution f has critical
points exactly in the critical points of d ◦ πϕ (i.e., f has critical points if and
only if d or πϕ has critical points).

Proof. Let us denote by q : R → T, q(x) = exp(2πix), the standard quotient
map. Clearly, q is a local diffeomorphism. Since R is contractible then, by
[27, Th. 6.1] the map d ◦ πϕ : R → T lifts to a continuous map Φ : R → R

with respect to q, i.e., the following diagram commutes:

R
Φ−−−−→ R⏐⏐�πϕ q

⏐⏐�
R/ϕ −−−−→

d
T.
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Since q is a real analytic local diffeomorphism then the lifting Φ has to be
real analytic and its critical points are exactly critical points of d ◦ πϕ.

Moreover, Φ(ϕ(x)) = Φ(x) + n(x), where n : R → Z is a continuous
(hence constant) function n(x) := n.

Now, we will use the well-known facts concerning liftings of homotopy
but for the reader’s convenience we provide details. If n = 0 then we can
define a continuous map

F : R × [0, 1] → R, F (x, t) = tΦ(x)

Therefore

F (ϕ(x), t) = tΦ(ϕ(x)) = tΦ(x) = F (x, t)

and F (·, t) is constant on full orbits of ϕ for every t ∈ [0, 1]. We can define a
continuous map

G : R/ϕ× [0, 1] → R, G(O(x), t) := F (x, t)

and q◦G is a homotopy joining d with the constant function; a contradiction.
We have proved that n �= 0 so we can define f : R → R, f(x) := 1

nΦ(x),
to be a real analytic solution of the Abel equation. As we have seen its critical
points are exactly the critical points of d ◦ πϕ. �

Now, we summarize our knowledge about eigenvalues of Cϕ : A (R) →
A (R) and their corresponding eigenspaces as well on solvability of the
Abel equation in case of ϕ with no fixed point (so it completes the proof
of Theorem B).

Theorem 3.11. Let ϕ : R → R be an analytic function. The following asser-
tions are equivalent.

(a) Every complex λ �= 0 is an eigenvalue of Cϕ with at least one real
analytic eigenvector non-vanishing at any point.

(a′) Every complex λ �= 0 is an eigenvalue of Cϕ with an infinite dimensional
eigenspace.

(b) There is a complex eigenvalue λ �= 1 for Cϕ with at least one real analytic
eigenvector non-vanishing at any point.

(b′) There is a complex eigenvalue λ �= 1 for Cϕ and ϕ has no fixed point.
(c) There is a non-constant eigenvector for the eigenvalue 1 and ϕ[2] �= id .
(d) Either ϕ > id and the set of critical points of ϕ is bounded from above

or ϕ < id and the set of critical points of ϕ is bounded from below.
(e) The space R/ϕ of full orbits of ϕ is a manifold homeomorphic to T which

has a real analytic structure making the canonical map πϕ : R → R/ϕ
real analytic (and, of course, then R/ϕ is real analytic diffeomorphic to
T).

(f) The Abel equation f ◦ ϕ = f + 1 has a real analytic solution f .

If these conditions hold, then for λ > 0 there is at least one strictly positive
eigenvector. Moreover, there is a real analytic solution f0 of the Abel equation
with real values such that the set of critical points is bounded from above (in
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case ϕ > id ) or bounded from below (in case ϕ < id ). In that case for every
complex λ �= 0, eμ = λ, the map

Tλ : A (T) → ker(Cϕ − λI), Tλ(g) := [exp ◦(μf0)] · [g ◦ q ◦ f0] ,

is a topological isomorphism of A (T) onto the eigenspace of Cϕ for λ (here
q : R → T, q(x) := exp(2πix)).

Remark 3.12. (1) Theorem 3.11 generalizes simultaneously the result on
the solvability of the Abel equation for ϕ = exp due to Kneser [32,
p. 64] and the results for ϕ a fixed-point free diffeomorphism due to
Belitskii and Lyubich [10, Main Theorem] that for a diffeomorphism ϕ
the Abel equation is solvable in A (R) if and only if ϕ has no fixed point.
In [12, Th. 4.1] (comp. [11, Th. 3.6]) it is proved that for a fixed point
free diffeomorphism ϕ even a more general equations are real analytic
solvable.

(2) The last statement in Theorem 3.11 means that every fixed point of
Cϕ on A (R) is of the form p ◦ f0, where p is a periodic real analytic
function with period 1. Clearly, for any real analytic solution f of the
Abel equation all real analytic solutions of this equation are of the
form f + f1 where f1 is a fixed point of Cϕ, by the above theorem,
f1 = g ◦ q ◦ f0 for some g ∈ A (T). This result improves the result of
Abel true only for strictly increasing solutions; see [1] or [45].

(3) If ϕ is a diffeomorphism without fixed points then in [12, Th. 4.2] some
1−1 correspondence between periodic functions and eigenfunctions for
Cϕ with arbitrary fixed λ �= 0 is established.

Proof. (a)⇒(b) is obvious. The implication (b)⇒(f) follows from Proposition
3.2 and (f)⇒(a), (a′) from Proposition 3.1. The implications (a′)⇒(b′), (c)
are consequences of Theorem 2.9.

We prove now (b′), (c)⇒(d): first of all, by Theorem 2.9, (c) implies that
ϕ has no fixed point, and (b′) implies that there is a non-constant eigenvector
for some complex eigenvalue λ �= 1 (comp. Proposition 1.1). Since both cases
ϕ > id and ϕ < id are analogous, we assume ϕ > id , and the conclusion (d)
follows from Lemma 3.5.

(d)⇒(e) is Lemma 3.9 in case ϕ > id , the other case is analogous.
(e)⇒(f): by [47, Th. 6.3], R/ϕ is real analytic diffeomorphic to T and,

obviously, this diffeomorphism is a non-contractible real analytic map d from
R/ϕ to T. Apply Lemma 3.10 to conclude.

So far we have completed the proof of the equivalence of all the
assertions.

For a real eigenvalue λ with a non-vanishing eigenvector f , the real
part Re f and the imaginary part Im f of f are also such vectors. Clearly,
(Re f)2 + (Im f)2 is a strictly positive eigenvector for the eigenvalue λ2.

It remains to show the last part of the statement. We consider only the
case ϕ > id . By (e), there is a diffeomorphism d̃ : R/ϕ → T and as in the
proof of Lemma 3.10 we produce a solution of the Abel equation f0 : R → R.
By Lemmas 3.10 and 3.9, f0 has critical points exactly at critical points of
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ϕ[n] for any n ∈ N so its set is bounded from above. Since exp ◦(μf0) is a
non-vanishing function and

Cϕ(exp ◦(μf0)) = λ exp ◦(μf0),

we get that the map

Gμ : ker(Cϕ − I) → ker(Cϕ − λI), Gμ(g) := (exp ◦(μf0)) · g,
is a topological isomorphism. So it suffices to consider the case λ = 1, μ = 0
and T1 = Cq◦f0 .

It is easy to observe that T1 : A (T) → ker(Cϕ − I) continuously. Since
f0(R) is a halfline unbounded from above (or the whole line) we get q◦f0(R) =
T. Then by [21, Th. 3.2], Cq◦f0 is open onto its image. Since Cq◦f0 is injective
it follows that this map is a topological isomorphism.

Now, we can prove that Cq◦f0 is surjective onto ker(Cϕ − I) for the
above choice of f0. Let Cϕ(f) = f , then f is constant on every full orbit
O(x), x ∈ R. Thus f = f̂ ◦ πϕ for some continuous map f̂ : R/ϕ → C. Since
πϕ is a local diffeomorphism on a halfline of R mapped via πϕ onto the whole
R/ϕ the map f̂ is also real analytic.

Let us take the map q ◦ f0 : R → T, clearly q ◦ f0 is constant on full
orbits of ϕ so q ◦ f0 = d ◦ πϕ for some continuous map d : R/ϕ → T. Since
q ◦ f0 has no critical points on a halfline of R unbounded from above which
is mapped via πϕ onto the whole R/ϕ, πϕ is there a local diffeomorphism
and q ◦ f0(R) = T then d : R/ϕ → T is real analytic, surjective and has no
critical points. We will show that d is injective. In order to show that we
have to show that q ◦ f0 does not glue together two different orbits. Now,
for x big enough ϕ is strictly increasing on (x, ϕ(x)) and also f0 is injective
on the same interval. Moreover, f0(ϕ(x)) = f0(x) + 1. This implies that
for any y ∈ (x, ϕ(x)) the difference between f0(x) and f0(y) is non-integer.
On the other hand by Lemma 3.4 every orbit different from O(x) intersects
(x, ϕ(x)). We have proved that q◦f0 cannot glue this orbit with O(x). Finally,
d : R/ϕ → T is a diffeomorphism.

Therefore

f = f̂ ◦ d−1 ◦ d ◦ πϕ = Cq◦f0(f̂ ◦ d−1), where f̂ ◦ d−1 ∈ A (T). �
Theorem 3.11 can be used to conclude that the Abel equation f(ϕ(x)) =

f(x) + 1 has a real analytic solution f ∈ A (R) for ϕ(x) = eαx , α > 1/e
(for α ≤ 1/e the map ϕ has a fixed point), and it does not have a real
analytic solution for ϕ(x) = x + 1 + α sin(α−1x), 0 < α < 1, since this
function is real analytic, it is a (continuous) homeomorphism on R, has no
fixed points, but it has an unbounded sequence of critical points, namely
ϕ′(x) = 0 if and only if x = 2sπα, s ∈ Z. The later example is mentioned in [9,
Example 6.2] in connection with the smooth solvability of the cohomological
equation. Observe that the point spectrum of Cϕ for ϕ(x) = eαx, α > e−1 is
equal to C \ {0} (the spectrum is equal to C), and that for ϕ(x) = x + 1 +
α sin(α−1x), 0 < α < 1, the only eigenvalue of Cϕ is 1.

Proposition 3.13. If the conditions of Theorem 3.11 hold, then the closed
linear span of all eigenspaces is equal to im Cf0 ⊂ A (R) for any solution
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f0 like in Theorem 3.11. This space is equal to the whole A (R) if and only
if ϕ has no critical points. If ϕ is surjective, then this invariant space is
isomorphic to A (R).

Proof. The space of periodic real analytic functions is the closed linear span
of

(exp(2πik · ))k∈Z
.

Thus the closed linear span of all eigenspaces is equal to the closed linear
span of

(exp ◦((μ+ 2πik)f0))k∈Z,μ∈C
= (Cf0(exp(μ · )))μ∈C

.

It is well-known that (exp(μ·))μ∈C
is linearly dense in A (R) (see e.g. [30,

Prop. 3.2 and Cor. 3.3]), this yields the conclusion.
Observe that ϕ has critical points if and only if f0 has critical points

(see the proof of Theorem 3.11). Thus, by Theorem 1.2, im Cf0 is dense in
A (R) if and only if ϕ has no critical points.

If ϕ is surjective then f0 is also surjective and then, by Theorem 1.2,
the map Cf0 is an isomorphism of A (R) onto a closed subspace of A (R). �

We have completed the proof of Theorems A and B.

4. Iteration Semigroups and the Abel Equation

In the paper of Kneser [32] it is in fact constructed a solution of the Abel
equation f ◦ ϕ = f + 1 for ϕ = exp which is additionally increasing without
critical points. This allowed Kneser to show that there is a real analytic
function g : R → R, g[2] = exp. We find a generalization of this result nearly
in its sharp form.

Let us say that the real analytic map ϕ : R → R embeds into a real ana-
lytic iteration semigroup whenever there is a real analytic map
Φ : (R+ ∪ {0}) × R → R (a real analytic iteration semigroup or flow)

Φ(t+ s, x) = Φ(t,Φ(s, x)) for every t, s ∈ R+ ∪ {0}, x ∈ R

such that

Φ(n, x) = ϕ[n](x) for every n ∈ N0, x ∈ R.

Clearly, if ϕ embeds into a real analytic iteration semigroup Φ, then there are
real analytic functions gn such that g[n]

n = ϕ, one takes gn(x) := Φ(1/n, x),
i.e. there exists iteration roots of order n for ϕ. In the book of Kuczma [34,
Chapter 9] it is considered the so-called iteration group (in case of dependence
on t ∈ R). Iteration roots are considered in [34, Chapter 15], [35, Chapter
11], [8, Section 2].

Lemma 4.1. Let ϕ : R → R be a real analytic map embedded into a real
analytic iteration semigroup Φ.
(a) The function Φ(t, ·) (in particular, ϕ) has no critical points for any

t ∈ R and it is always strictly increasing.
(b) If ϕ has no fixed point, then
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Φ(t, x) �= Φ(s, x),
∂Φ
∂t

(t, x) �= 0 for every s, t ∈ R+ ∪ {0}, s �= t, x ∈ R.

Proof. (a) Denote by ∂2 to be a partial derivative with respect to the second
variable. Observe that if ∂2Φ(s, y) = 0 then

∂2Φ(t+ s, y) = ∂2Φ(t,Φ(s, y)) · ∂2Φ(s, y) = 0, for every t > 0.

Thus the real analytic function ∂
∂yΦ(·, y) ≡ 0. This is a contradiction, since

Φ(0, x) ≡ x and so ∂2Φ(0, y) = 1.
Now, the derivative of ϕ must be real and cannot change the sign. If

ϕ has no fixed point it must be increasing. If ϕ has a fixed point u, then
(ϕ[2])′(u) > 0. If ϕ′(u) < 0, then the real function ∂2Φ(t, y) must change
the sign somewhere between t = 1 and t = 2 and this contradicts the first
statement. We have proved that ϕ′(u) > 0 and so ϕ′ > 0 everywhere.

(b) Assume that Φ(t, x) = Φ(s, x) for some t < s. Hence

Φ(t, x) = Φ (s− t,Φ(t, x)) ,

i.e., there is y ∈ R and t > 0 such that Φ(t, y) = y, and, obviously, Φ(nt, y) =
y for any n ∈ N. We consider only the case ϕ > id since the other case is
analogous.

In that case Φ(n, y) = ϕ[n](y) tends to +∞ for n → +∞. This means
that t is not rational but then for any ε > 0, N > 0 there are m,n ∈ N,
m > N , such that

0 < m− nt < ε.

Since Φ(·, y) is continuous this is a contradiction with:

Φ(m, y) = Φ(m− nt,Φ(nt, y)) = Φ(m− nt, y).

Now, observe that Φ(·, x) is the only real analytic solution of the Cauchy
problem

F ′(t) = G(F (t)), F (0) = x,

where G(z) := ∂Φ
∂t (0, z). If ∂Φ

∂t (w, u) = 0 then G(Φ(w, u)) = 0 and the con-
stant function F ≡ Φ(w, u) is the solution of the above Cauchy problem for
x = Φ(w, u). Hence Φ(·,Φ(w, u)) is constant; a contradiction. �

Theorem 4.2. Let ϕ : R → R be a real analytic map. The following assertions
are equivalent:

(a) The map ϕ has no fixed point and it embeds into a real analytic iteration
semigroup.

(b) The Abel equation f ◦ ϕ = f + 1 has a real analytic solution f without
critical points and with only real values.

(c) The map ϕ has no fixed and no critical points.

If these equivalent conditions are satisfied, then there is a real analytic func-
tion g such that g[n] = ϕ, i.e., the map Cϕ : A (R) → A (R) has a n-th root
Cg in the algebra of operators on A (R).
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Kneser [32] considered the case ϕ = exp, Belitskii and Tkachenko [11,
Th. 2.20]proved that (c) implies existence of arbitrary iteration roots without
using iteration semigroup. They also showed in the same place that if ϕ is a
diffeomorphism, then (a) holds.

Proof. (a)⇒(c) Lemma 4.1 (a).
(b)⇒(a) Solvability of the Abel equation implies that ϕ has no fixed

point. Since f has no critical points it is either strictly increasing or strictly
decreasing. The image of f is always unbounded from above so it must be of
the form (a,+∞) where a could be −∞. It is easily seen (in fact this is an
observation of Abel [1], comp. [34, p. 198] and [32, p. 57]) that

Φ(t, x) := f−1(f(x) + t), t ≥ 0,

is a real analytic flow in which ϕ embeds.
(c)⇒(b): Follows from Lemmas 3.9 and 3.10, see the proof of (e)⇒(f)

in Theorem 3.11. �
The observation that the existence of invertible solution of a Schröder

equation implies embedding into an iteration semigroup is a folklore.

Proposition 4.3. Let ϕ : R → R be a real analytic map without critical points.
If ϕ[2] has exactly one fixed point u and 0 < ϕ′(u) �= 1, then ϕ embeds into a
real analytic iteration semigroup. In particular, in that case there exist roots
of the operator Cϕ of arbitrary order.

Proof. By Proposition 2.7, if ϕ′(u) > 1, then the solution f : R → R of the
equation Cϕ(f) = ϕ′(u)f is a diffeomorphism. We get the iteration semi-
group:

Φ(t, x) := f−1
(
(ϕ′(u))t · f(x)

)
. (4)

Assume that 0 < ϕ′(u) < 1. By Theorem 2.6, there is a solution f :
R → R of the equation Cϕ(f) = ϕ′(u)f without critical points, f(u) = 0.
Since ϕ′(u) < 1 then for any x ∈ R the value (ϕ′(u))t · f(x) belongs to the
image of f . So we can define the iteration semigroup be the formula (4). �

We have completed the proof of Theorem C. Unfortunately, in the case
of self maps ϕ with fixed points we cannot characterize when ϕ embeds into a
real analytic iteration semigroup. Nevertheless, we suspect that the following
conjecture is true.

Conjecture. A real analytic map ϕ : R → R embeds into a real analytic
iteration semigroup if and only if it has no critical point, has at most one
fixed point u and in that case 0 < ϕ′(u) �= 1.

In [8, Section 2] examples of polynomials ϕ without embedding into an
iteration semigroup are mentioned. By [34, Th. 15.13], the function ϕ(x) =
exp(x)−1 without critical points which has exactly one fixed point u = 0 with
ϕ′(u) = 1 cannot be embedded into an iteration semigroup. Let us observe
that if ϕ embeds into an iteration semigroup Φ then ϕ commutes with every
map gt := Φ(t, ·), i.e., gt ◦ ϕ = ϕ ◦ gt. Then the necessary condition for
existence of Φ is the existence of many functions commuting with ϕ. This is
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the method used by Baker to show that such Φ does not exist for a wide class
of ϕ defined locally around a fixed point or for some meromorphic ϕ; see [34,
Th. 10.11] and the papers [2–7,44], where a description of analytic functions
defined locally around the fixed point and commuting with fixed ϕ is given
as well as some criteria of existence of entire functions commuting with some
ϕ are given.

Especially interesting are papers [5,6] where the case of ϕ with a fixed
point u, ϕ′(u) = 1, is considered — i.e., the case we cannot decide here. In
particular, from [5, Th. 2] it follows that if a real analytic function ϕ : R → R

extends to a function meromorphic on C or to an entire function with a fixed
point u, ϕ′(u) = 1, then the function ϕ cannot be embedded into an iteration
semigroup. In [6] more examples related to embeddability into an iteration
semigroup are given but mostly they are not real analytic on the whole line.

The case of functions ϕ with two fixed points is considered in [31], again
it implies that many functions ϕ cannot be embed into an iteration semigroup.
In order to solve the problem of characterization of ϕ which embeds into
an iteration semigroup we need to describe global real analytic functions
which commute with ϕ. We believe that the question of characterizing ϕ with
real analytic iteration roots is even more difficult although also in that case
iteration roots of ϕ commute with ϕ so the same necessary condition works.
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[6] Baker, I.N.: Non-embeddable functions with a fixpoint of multiplier 1. Math.
Z. 99, 337–384 (1967)

[7] Baker, I.N.: On a class of nonembeddable entire functions. J. Ramanujan Math.
Soc. 3, 131–159 (1988)

[8] Baron, K., Jarczyk, W.: Recent results on functional equations in a single
variable, perspectives and open problems. Aequ. Math. 61, 1–48 (2001)

[9] Belitskii, G., Lyubich, Y.: The Abel equation and total solvability of linear
functional equations. Studia Math. 127, 81–97 (1998)

[10] Belitskii, G., Lyubich, Yu.: The real analytic solutions of the Abel functional
equation. Studia Math. 134, 135–141 (1999)

[11] Belitskii, G., Tkachenko, V.: One-Dimensional Functional Equations. Springer,
Basel (2003)

[12] Belitskii, G., Tkachenko, V.: Functional equations in real analytic func-
tions. Studia Math. 143, 153–174 (2000)
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Rep. Univ. Jyväskylä Dept. Math. Stat., vol. 92, pp. 39–55 (2003)

[16] Contreras, M.D.: Iteración de funciones anaĺıticas en el disco unidad. Univer-
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[23] Domański, P., Langenbruch, M.: Coherent analytic sets and composition of
real analytic functions. J. Reine Angew. Math. 582, 41–59 (2005)
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