319 research outputs found

    Size dependent symmetry breaking in models for morphogenesis

    Get PDF
    A general property of dynamical systems is the appearance of spatial and temporal patterns due to a change of stability of a homogeneous steady state. Such spontaneous symmetry breaking is observed very frequently in all kinds of real systems, including the development of shape in living organisms. Many nonlinear dynamical systems present a wide variety of patterns with different shapes and symmetries. This fact restricts the applicability of these models to morphogenesis, since one often finds a surprisingly small variation in the shapes of living organisms. For instance, all individuals in the Phylum Echinodermata share a persistent radial fivefold symmetry. In this paper, we investigate in detail the symmetry-breaking properties of a Turing reaction–diffusion system confined in a small disk in two dimensions. It is shown that the symmetry of the resulting pattern depends only on the size of the disk, regardless of the boundary conditions and of the differences in the parameters that differentiate the interior of the domain from the outer space. This study suggests that additional regulatory mechanisms to control the size of the system are of crucial importance in morphogenesis

    Baryon flow at SIS energies

    Get PDF
    We calculate the baryon flow in the energy range from .25 to 2.5AGeV\le 2.5 AGeV in a relativistic transport model for Ni+NiNi+Ni and Au+AuAu+Au collisions employing various models for the baryon self energies. We find that to describe the flow data of the FOPI Collaboration the strength of the vector potential has to be reduced at high relative momentum or at high density such that the Schr\"odinger- equivalent potential at normal nuclear density decreases above 1 GeV relative kinetic energy and approaches zero above 2 GeV.Comment: 20 pages, LATEX, 7 PostScript figure

    Local well-posedness for membranes in the light cone gauge

    Full text link
    In this paper we consider the classical initial value problem for the bosonic membrane in light cone gauge. A Hamiltonian reduction gives a system with one constraint, the area preserving constraint. The Hamiltonian evolution equations corresponding to this system, however, fail to be hyperbolic. Making use of the area preserving constraint, an equivalent system of evolution equations is found, which is hyperbolic and has a well-posed initial value problem. We are thus able to solve the initial value problem for the Hamiltonian evolution equations by means of this equivalent system. We furthermore obtain a blowup criterion for the membrane evolution equations, and show, making use of the constraint, that one may achieve improved regularity estimates.Comment: 29 page

    Classification of All 1/2 BPS Solutions of the Tiny Graviton Matrix Theory

    Full text link
    The tiny graviton matrix theory [hep-th/0406214] is proposed to describe DLCQ of type IIB string theory on the maximally supersymmetric plane-wave or AdS_5xS^5 background. In this paper we provide further evidence in support of the tiny graviton conjecture by focusing on the zero energy, half BPS configurations of this matrix theory and classify all of them. These vacua are generically of the form of various three sphere giant gravitons. We clarify the connection between our solutions and the half BPS configuration in N=4 SYM theory and their gravity duals. Moreover, using our half BPS solutions, we show how the tiny graviton Matrix theory and the mass deformed D=3, N=8 superconformal field theories are related to each other.Comment: 40 pages, 12 figures, v

    Collisional effects on the drift-cyclotron instability

    Full text link
    The drift-cyclotron instability in a weakly collisional plasma is considered including temperature perturbations. Collisions are described by a model Fokker-Planck equations. The growth rate of the instability is obtained analytically.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21759/1/0000153.pd

    Directed flow in Au+Au, Xe+CsI and Ni+Ni collisions and the nuclear equation of state

    Full text link
    We present new experimental data on directed flow in collisions of Au+Au, Xe+CsI and Ni+Ni at incident energies from 90 to 400A MeV. We study the centrality and system dependence of integral and differential directed flow for particles selected according to charge. All the features of the experimental data are compared with Isospin Quantum Molecular Dynamics (IQMD) model calculations in an attempt to extract information about the nuclear matter equation of state (EoS). We show that the combination of rapidity and transverse momentum analysis of directed flow allow to disentangle various parametrizations in the model. At 400A MeV, a soft EoS with momentum dependent interactions is best suited to explain the experimental data in Au+Au and Xe+CsI, but in case of Ni+Ni the model underpredicts flow for any EoS. At 90A MeV incident beam energy, none of the IQMD parametrizations studied here is able to consistently explain the experimental data.Comment: RevTeX, 20 pages, 30 eps figures, accepted for publication in Phys. Rev. C. Data files available at http://www.gsi.de/~fopiwww/pub

    X ray standing waves reveal lack of OH termination at hydroxylated ZnO 0001 surfaces

    Get PDF
    The vertical adsorption distances of the planar conjugated organic molecule 3,4,9,10 perylenetetracarboxylic diimide PTCDI on hydroxylated ZnO 0001 , determined with the x ray standing wave technique XSW , are at variance with adsorption geometries simulated with density functional theory for surface structure models that consider terminating OH, whereas good agreement is found for PTCDI in direct contact with the topmost Zn layer. The consequential assignment of OH to subsurface sites is supported by additional, independent XSW and energy scanned photoelectron diffraction data and calls for a reconsideration of the prevalent surface models with important implications for the understanding of ZnO 0001 surface

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284
    corecore