719 research outputs found

    Inhibition of proton-transfer steps in transhydrogenase by transition metal ions

    Get PDF
    AbstractTranshydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a “cyclic reaction” was stimulated. Of metal ions tested they were effective in the order Pb2+>Cu2+>Zn2+=Cd2+>Ni2+>Co2+. The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn2+-binding site(s). A mutant in which ÎČHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn2+. Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn2+-induced FTIR difference spectra of the ÎČHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that ÎČHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase

    Representation theory of some infinite-dimensional algebras arising in continuously controlled algebra and topology

    Get PDF
    In this paper we determine the representation type of some algebras of infinite matrices continuously controlled at infinity by a compact metrizable space. We explicitly classify their finitely presented modules in the finite and tame cases. The algebra of row-column-finite (or locally finite) matrices over an arbitrary field is one of the algebras considered in this paper, its representation type is shown to be finite.Comment: 33 page

    Optimizing land management strategies for maximum improvements in lake dissolved oxygen concentrations

    Get PDF
    Eutrophication and anoxia are unresolved issues in many large waterbodies. Globally, management success has been inconsistent, highlighting the need to identify approaches which reliably improve water quality. We used a process-based model chain to quantify effectiveness of terrestrial nutrient control measures on in-lake nitrogen, phosphorus, chlorophyll and dissolved oxygen (DO) concentrations in Lake Simcoe, Canada. Across a baseline period of 2010–2016 hydrochemical outputs from catchment models INCA-N and INCA-P were used to drive the lake model PROTECH, which simulated water quality in the three main basins of the lake. Five terrestrial nutrient control strategies were evaluated. Effectiveness differed between catchments, and water quality responses to nutrient load reductions varied between deep and shallow lake basins. Nutrient load reductions were a significant driver of increased DO concentrations, however strategies which reduced tributary inflow had a greater impact on lake restoration, associated with changes in water temperature and chemistry. Importantly, when multiple strategies were implemented simultaneously, resultant large flow reductions induced warming throughout the water column. Negative impacts of lake warming on DO overwhelmed the positive effects of nutrient reduction, and limited the effectiveness of lake restoration strategies. This study indicates that rates of lake recovery may be accelerated through a coordinated management approach, which considers strategy interactions, and the potential for temperature change-induced physical and biological feedbacks. Identified impacts of flow and temperature on rates of lake recovery have implications for management sustainability under a changing climate

    Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    Get PDF
    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans

    Rethinking the Ambiguities of Abstraction in the Anthropocene

    Get PDF
    The ambiguities of abstraction were at the heart of critical approaches to the problems of modernity. Abstraction, so fundamental to the modernist episteme, was seen to have alienated humanity from itself and from its entangled relations with its environment, constituting a fundamental rift between the subject and the world. This article analyses how the critique of the modernist episteme has increasingly shifted under the auspices of the Anthropocene. Rather than seeking to overcome the ambiguities of abstraction and return the human to the world, approaches that seek to affirm the Anthropocene have emphasised that modernist thought did not take abstraction far enough. Rather than abstraction being problematic for contemporary thought, abstraction is seen to be a facet of the world in its lively, partial and contingent interaction. This article is organised in three sections. The first section introduces the problematic of abstraction in the Anthropocene, highlighting that critical theory approaches tend to see the Anthropocene within a discourse of modernist critique. The second section draws out the importance of understanding the distinct mode of contemporary affirmation, which rather than seeking to return man to the world, emphasises the impossibility of finding meaning in the world. It is this inverting of critical understandings that enables abstraction to be seen positively rather than problematically. The final section expands on this point to consider how contemporary theoretical approaches articulate the transvaluation of abstraction as the guide to contemporary modes of life

    The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar

    Get PDF
    The formation of fouling deposit from foods and food components is a severe problem in food processing and leads to frequent cleaning. The design of surfaces that resist fouling may decrease the need for cleaning and thus increase efficiency. Atomic force microscopy has been used to measure adhesion forces between stainless steel (SS) and fluoro-coated glass (FCG) microparticles and the model food deposits (i) whey protein (WPC), (ii) sweetened condensed milk, and (iii) caramel. Measurements were performed over a range of processing temperatures between 30 and 90 oC and at contact times up to 60 s. There is a significant increase in adhesion force of both types of microparticle to WPC at 90 oC for all contact times. For confectionary deposits adhesion to SS was similar. Adhesion of confectionary deposits to FCG at 30 oC revealed a decrease in adhesion compared to SS; at higher temperatures the adhesion forces were similar

    Matching the nano- to the meso-scale: measuring deposit–surface interactions with atomic force microscopy and micromanipulation

    Get PDF
    Many researchers have studied the effects of changing the surface on fouling and cleaning. In biofouling the 'Baier curve' is a well-known result which relates adhesion to surface energy, and papers on the effect of changing surface energy to food fouling can be found more than 40 years ago. Recently the use of modified surfaces, at least at a research level, has been widespread. Here two different ways of studying surface-deposit interactions have been compared. Atomic force microscopy (AFM) is a method for probing interactions at a molecular level, and can measure (for example) the interaction between substrate and surfaces at a nm-scale. At a ÎŒm-mm level, we have developed a micromanipulation tool that can measure the force required to remove the deposit; the measure incorporates both surface and bulk deformation effects. The two methods have been compared by studying a range of model soils: toothpaste, as an example of a soil that can be removed by fluid flow alone, and confectionery soils. Removal has been studied from glass, stainless steel and fluorinated surfaces as examples of the sort of surfaces that can be found in practice. AFM measurements were made by using functionalized tips in force mode. The two types of probe give similar results, although the rheology of the soil affects the measurement from the micromanipulation probe under some circumstances. The data suggests that either method could be used to test candidate surfaces

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+→J/ψ K+B^+ \to J/\psi \, K^+ and B0→J/ψ K∗0B^0 \to J/\psi \, K^{*0} using 3.0 fb−13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7 TeV7\mathrm{\,TeV} and 8 TeV8\mathrm{\,TeV}. Its tagging power on these samples of B→J/ψ XB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore