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Abstract 

Many researchers have studied the effects of changing the surface on fouling and cleaning. In 

biofouling the ‘Baier curve’ is a well-known result which relates adhesion to surface energy, and papers 

on the effect of changing surface energy to food fouling can be found more than 40 years ago. Recently 

the use of modified surfaces, at least at a research level, has been widespread. Here two different ways 

of studying surface-deposit interactions have been compared. Atomic force microscopy (AFM) is a 

method for probing interactions at a molecular level, and can measure (for example) the interaction 

between substrate and surfaces at a nm-scale. At a μm-mm level, we have developed a 

micromanipulation tool that can measure the force required to remove the deposit; the measure 

incorporates both surface and bulk deformation effects. The two methods have been compared by 

studying a range of model soils: toothpaste, as an example of a soil that can be removed by fluid flow 

alone, and confectionery soils. Removal has been studied from glass, stainless steel and fluorinated 

surfaces as examples of the sort of surfaces that can be found in practice. AFM measurements were 

made by using functionalized tips in force mode. The two types of probe give similar results, although 

the rheology of the soil affects the measurement from the micromanipulation probe under some 

circumstances. The data suggests that either method could be used to test candidate surfaces. 
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INTRODUCTION 

The cleaning of process plant is a difficult multiscale problem; metre-scale plant becomes clean as a 

result of fluid and chemical action on surfaces of individual plant items, acting at the meso- and nano 

scale. A sketch of the different length scales involved in cleaning process plant is given as Figure 1. To 

remove deposit from surfaces is difficult both to understand scientifically and to do industrially 

(Wilson, 2005; Fryer et al., 2006) 

 

Fast moving consumer goods (FMCG) industries (food and consumer products) generally operate 

‘cleaning-in-place’ (CIP) processes.  Here, an automated system provides a set of programs to rinse and 

recirculate cleaning solutions through the equipment. Cleaning regimes have a number of 

environmental impacts, as use of chemicals, water, steam and energy causes an increase in the carbon 

footprint of the plant. Regular cleaning in-place can be very expensive in terms of downtime and 

materials (Tamine, 2008). To optimise cleaning time, it is essential to understand both the material 

behaviour during cleaning, and the removal mechanism.      

 

A wide variety of fouling deposits are formed which require different cleaning fluids for their removal. 

Figure 2 shows a range of cleaning problems from the food and personal product industries, classified 

on axes depicting the type of deposit and the cost of cleaning chemical. Clusters of similar problems 

are found (Fryer and Asteriadou, 2009). The systems that are most difficult to clean are shown in the 

shaded area.  

 

The severity of the fouling deposit differs depending on material properties: 

 

 low viscosity fluids: here the fluid forming the ‘deposit’ is water or has properties close to water. 

This is found in the emptying of pipes and tanks containing milk or beer between process runs, 

 high viscosity fluids: here the deposit is a highly viscous (perhaps viscoelastic) fluid, such as 

layers of toothpaste or shampoo left on the walls of process equipment, or starch from food 

sauces. The viscosity of these fluids may be several thousand times that of water, 

 cohesive solids: here the fouling deposit behaves as a solid. Different deposits have very 

different material properties, ranging from the soft protein gel films formed from milk or other 

food fluids to the hard soils generated by precipitated minerals. 

 

The properties of the deposit control the type of cleaning fluid needed: 

 

 cold water: some soils are sufficiently weakly bound to the surface that they can be removed 

by rinsing with cold water alone. 

 hot water: in personal products processing it is common to clean by circulation of hot water; 

removal is thus by fluid flow alone (Sahu et al., 2007) 

 hot cleaning fluid: many deposits are impossible to remove by water alone. Cleaning chemicals 

are thus used to speed the cleaning process and complex interactions between cleaning time, 

chemistry and flowrate are found (for example, Gillham et al., 1999, 2000; Christian et al., 

2006).  

 

The axes in Figure 1 are not in any sense numeric; the environmental cost of hot cleaning chemical is 

many times that of cold water. The aim of the process or product designer is to move away from the 

right hand side and top of the diagram. As part of a large industry-academia project (‘ZEAL’) we have 

studied a range of deposits from different industries, including brewery (Goode et al., 2010), 

toothpaste (Cole et al., 2010) and confectionery (Othman et al.,2010) soils. 
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Surface modification has often been proposed as a solution to the fouling problem (such as by Zhao et 

al., 2005) and the differential adhesion of biofilms (‘the Baier curve’) to surfaces of different energy is 

well known (Baier, 1980). This curve shows that adhesion of bacteria to surfaces is minimised at some 

surface energy. Britten et al. (1988) studied the effect of surface coatings on dairy fouling, and found 

that interfacial energy of the surface appeared to be the main factor affecting the adhesive strength. 

Two more factors, discussed by Yoon and Lund (1994), are believed to affect fouling: (i) surface 

roughness, where the higher roughness the greater the contact area resulting in higher fouling rate 

and (ii) surface imperfections which provide more sites for crystal nucleation. For example Excalibur, 

a type of PTFE coating with a rough surface has been found to increase the fouling ability of a surface 

by 32% (Beuf et al., 2003).  Rosmaninho et al. (2007,2008) studied the adhesion of milk components 

under different flow conditions onto various surfaces and found that adhesion depended strongly on 

both surface and the deposit.  

 

At present, the design of antifouling surfaces is empirical and has to be done on lab or pilot scales. The 

aim of this work is to identify whether it is possible to use surface analysis methods to quantify surface 

cleanability. A number of methods have been used to investigate the interactions between fouling 

materials and surfaces, in different industry sectors. Previous work on different fouling deposits and 

surfaces have used atomic force microscopy (AFM) to study surfaces, such as Parbhu et al. ,(2006) Santos 

et al. (2004), Verran and Whitehead (2006) and Whitehead et al. (2006). AFM is able both to measure 

surface topography and energetics over a nanometre to micron scale (such as in marine biofilms by 

Phang et al., 2006, 2010) However there is very little work done in which AFM has been used to study 

food fouling problems.  

 

A micromanipulation technique has been developed at Birmingham to quantify the forces involved in 

deposit removal at the micron-mm scale (Liu et al., 2002, 2006ab, 2007). In this method, deposit is 

removed from the surface using a T-shaped probe connected to a force transducer which records the 

force needed as a function of time. Data can be expressed as the work required to remove deposit per 

unit area, i.e. in units of J/m2. The same type of measurement can be made using dynamic gauging 

(Saikwan et al. 2006)  where deposit is sucked from the surface by fluid action. The two give similar 

results (Hooper et al., 2006). Saikhwan et al. (2006) and Liu et al. (2006a) studied removal using 

dynamic gauging and micromanipulation probes and found analogies to the Baier curve, in that 

adhesive failure occurred preferentially over a range of surface energies (22-28 mN/m) where surface 

binding was least strong. 

 

The long-term goal of cleaning research is to generate systems that are inherently easier to clean – or 

which do not foul at all. This will require innovation both in the design of surfaces and of process plant. 

Obviously the measurement of the interaction between surfaces and deposits is important. Both AFM 

and micromanipulation methods can measure interfacial forces, but the relationship between them is 

unclear. The two measurement methods are both capable of giving numerical results for the strength 

of the forces involved in adhesion. It is not clear, however, whether the nano- and meso- scale can be 

compared, and whether the approach might be used to quantify cleanability.  

 

In this paper, therefore, both AFM and micromanipulation have been used to measure the force 

required to remove four deposits from three surfaces of interest. As representative of actual FMCG 

deposits, toothpaste and confectionery deposits have been studied, and their interactions with 

stainless steel, glass and PTFE surfaces measured. 
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MATERIALS AND METHODS 

Deposits and surfaces 

The chosen deposits are from Types 1 and 3 in Figure 1: those removed by water alone (toothpaste) 

and those that require chemical removal (SCM, Turkish delight and caramel). Three surfaces were 

tested; glass, stainless steel and PTFE, which differ both in surface roughness (5.36 nm, 230 nm and 

75.6 nm respectively) and surface energy (with water: 0.007 mJ/m2, 0.075 mJ/m2, 0.053 mJ/m2; with 

sorbitol, the main toothpaste ingredient: 0.07 mJ/m2, 0.07 mJ/m2, 0.035 mJ/m2), data from Akhtar 

(2010) .   

 

The composition of the deposits was: 

 

(a) Toothpaste contains: sorbitol, silica, saccharin, titanium dioxide, sodium lauryl sulphate, zinc 

citrate and water, (GSK, UK). Toothpaste is a suspension of different (titanium dioxide, zinc citrate, 

sorbitol and silica) particles that are approximately 0.5 µm in diameter. 

 

(b) Confectionery deposits (all from Cadbury UK) were used, these were (i) caramel (glucose, 

sugar, whey powder, palm oil and water), (ii) turkish delight (agar, glucose, starch, sugar and 

water) and (iii) sweetened condensed milk (SCM) (sugar, butterfat, whey protein and water). 

 

Stainless steel is widely used in the food processing industry, and PTFE is used here as representative 

of a ‘non-stick’ surface. Glass is widely used in the food industry as a hygienic surface to prepare and 

serve food. 

 

AFM  

Full experimental details are given in Akhtar (2010). Tipless Si cantilevers of nominal length 225 µm, 

nominal force constant 48 N/m and nominal resonance frequency of 190 kHz (Windsor Scientific, UK) 

were employed throughout this study. As it was easier to functionalise the tips with the surface 

materials than with the deposits, the experiments were conducted using the following materials as 

AFM colloid probes;  

 Stainless steel 316L particles of 30 µm diameter (Reade, USA)  

 Glass particles of 30 µm diameter (Polysciences, UK)  

 Glass particles of 30µm diameter (Polysciences, UK) coated with a 200 nm thick film of vapour-

deposited trichloro(3,3,3-trifluoropropyl)silane (hereafter referred to using the acronym 

TCTFPS, Aldrich, UK)  

 

For each colloid probe, using the motorised stage on the AFM, each tipless cantilever was lowered into 

epoxy resin (Halfords, UK) to yield a small droplet on the underside of the cantilever upon retraction. 

The cantilever was then placed into contact with the desired microparticle and the adhesive allowed 

to cure. HPLC (High Performance Liquid Chromatography) grade water (Sigma-Aldrich, UK) was used 

for cleaning the modified tips. 

  

The AFM was housed on a vibration isolation table to minimise the effect of ambient noise on imaging 

and measurement quality.  Soil samples were deposited onto glass slides (Agar Scientific, UK) using a 

small syringe needle (Fisher Scientific, UK) prior to AFM analysis. All sample handling was carried out 

using Dumostar tweezers (Agar Scientific, UK) to minimise the risk of sample contamination.  

 

All force measurements were performed in contact mode using a NanoWizard II AFM (JPK, Berlin). 

Force measurements were performed using the modified colloid probe cantilevers. Acquired real-time 

data was exported using JPK image processing software to provide cantilever deflections, and the peak 



 

 5 

pull-off force was calculated using Hooke's law by multiplying the peak deflection by the nominal 

cantilever spring constant. Peak pull-off forces were subsequently normalised against the radius of the 

probe tip, which was measured using the video camera system attached to the AFM.   

 

Micromanipulation 

The following model surfaces were used;  

 Stainless steel 316L discs of 14 mm diameter and 1-2 mm thickness  

 Stainless steel 316L discs of 14 mm diameter and 1-2 mm thickness, coated with 1 mm of 

TCTFPS  

 Glass discs of 15 mm diameter and 1-2 mm thickness.  

 

All discs were made at the University of Birmingham. A mass of 0.2 g of food deposits was spread 

uniformly over the whole surface of the discs. The initial thickness of the food deposit layer was 

approximately 0.7 mm. The SCM deposit layers were baked in a pre-heated laboratory fan oven at 

80ºC for 1 hour, the other deposits were unbaked. The T-shaped probe was used to remove the food 

deposits at a constant speed of 1.1 mm/s. Gap widths (the height above the surface that the 

micromanipulation probe passes) of 20 µm, 100 µm, 200 µm, 300 µm and 400 µm were used.  

 

The force required to remove the deposit was measured by drawing the micromanipulation arm across 

the surface of the deposit. From the force F, which changes with time, the total work, W (J) done by 

the applied force, F(t), to remove the deposit may be calculated as: 

              (1) 

where d is the diameter of the circular disc, and tA and tC the first and last times at which the probe 

touched the fouled surface. The apparent adhesive strength of a fouling sample,  (J/m2), defined as 

the work required to remove the sample per unit area of the surface to which it is attached, is then 

given by: 

          (2) 

 

where A (m2) is the disc surface area, and  is the fraction of that area covered by the sample that 

can be measured by image analysis. In this case  is equal to 100%. The term ‘pulling energy’ is here 

used as not all of the deposit is removed in all cases, save for the lowest cut height above the 

surface. 
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RESULTS AND DISCUSSION 

Atomic force microscopy 

Caramel adhesion. Typical sets of results are shown in Figure 3, which displays data for the 

interaction between stainless steel and caramel taken in groups of five at different surface locations; 

this shows variation at the local scale (<10 mm) and between different points at 1-2 mm separations. 

The data shows that at the local scale of 10 µm, variation is relatively small (<  ±0.05 N/m) while at a 

wider scale, variation is more substantial, with mean pull-off forces varying from 0.05 to 0.35 N/m. 

Data is plotted in terms of force over tip radius (F/R), which normalizes results from tips with 

different radii. This has the same units as the apparent adhesive strength defined above, although 

the two measurements are of different parameters. Errors are given as 2 standard deviations from 

the mean. 

 

The pull-off forces between the surfaces and the food deposits are dependent upon the surface 

chemistry of both interacting bodies. The result depends both on the area of contact between the 

sphere and deposit, and the specific location on the deposit where the sphere makes contact.  In 

general, the local variation was less than that over the wider area.  

 

Figure 3(a) shows the pull off forces between glass, stainless steel and TCTFPS-coated  microparticles 

attached to AFM tips immersed in caramel, for five different contact points. There is a clear difference 

between the forces measured for the three surfaces:  

 a mean adhesive force of 0.4 (±0.02) N/m between glass and caramel, whereas  

 stainless steel exhibited lower adhesive forces of 0.18 (±0.02) N/m, with  

 the fluorinated, hydrophobic TCTFPS-coating exhibiting the lowest force of 0.04 (±0.02) N/m.    

There is significant variation between the force measured at different points on the surface.  

 

Adhesion of other species. Figure 4 (b)-(d) shows the adhesion behaviour of the combination of each 

microparticle and the other three deposits. The relative strengths of the interactions between each 

type of deposit and surface can be seen. For SCM, glass exhibits the largest adhesion, with stainless 

steel the next largest and very small adhesion forces for the TCTFPS coating. Interestingly, for Turkish 

delight the greatest adhesive force was measured against TCTFPS, although the maximum force is only 

0.035 N/m. For toothpaste, glass again gives the largest adhesive force, again with much smaller 

adhesive forces. 

 

Figure 5 summarises the adhesion data, which vary over two orders of magnitude, with F/R values 

varying between 0.3 and 0.001 N/m  Greatest values are found with caramel and SCM, with smaller 

values for Turkish delight and toothpaste. Overall: 

 

 the forces between the deposits and the glass microparticle show the largest adhesive 

behaviour with caramel, SCM, and toothpaste; 

 the greatest adhesion between the TCTFPS-coated microparticle and the surface is seen for 

Turkish delight,  although for both Turkish delight and toothpaste the forces are much lower 

than for the other two systems. 

 

Micromanipulation 

Figure 6 shows examples of the data obtained using the micromanipulation probe. For caramel, in 

Figure 6(a) the pulling energy (measured force per unit area from where deposit is removed) increases 

with increasing height above the surface and the slopes of the lines of pulling energy versus thickness 

are similar. At the lowest cut height (20 mm) deposit is fully removed from the surface, whilst at higher 

cut height some deposit is left on the surface. The value at the smallest cut height will have the greatest 
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relevance in terms of surface adhesion force.. Stainless steel shows the highest pulling energy with 

slightly higher energies than glass, whilst TCTFPS shows the lowest interaction, of just over 4 J/m2 at 

20 mm. For the AFM data, shown in Figure 4, TCTFPS again gives lower adhesion forces. That the force 

required to remove the material increases with cut height implies that the force to remove the deposit 

from the surface is smaller than that required to cut the deposit in half, i.e. suggesting that the material 

is more likely to fail through fracture between surface and deposit. Toothpaste and SCM show similar 

trends as caramel where pulling energy decreases with increasing height (data not shown) 

 

Figure 6(b) shows corresponding data for Turkish delight, showing (i) that the pulling energy required 

to remove the deposit decreases with increasing cut height, and (ii) that the largest energies are found 

for the TCTFPS surface, although the maximum of just under 3,5 J/m2 at 20 mm is less than that of the 

caramel.  That the pulling energy decreases with cut height suggests that it is easier to cut thin layers 

of deposit than thick ones, i.e. that removal would probably be from the top of the deposit rather than 

by adhesive failure. 

Figure 7 shows the data sets for the micromanipulation experiments, plotting the results to remove 

the deposit for a cut height of 20 microns, i.e. where the cut is closest to the surface, and where the 

force measured will be most related to the surface-deposit interactions.  In three out of the four cases, 

stainless steel has the highest measured force, whilst for the Turkish delight, the largest force between 

deposit and surface is found for the TCTFPS. 

Comparison. 

Both methods can be successfully used to get an idea of interfacial forces. Figure 7 can be usefully 

compared with Figure 5. The clear difference is that a log scale is needed to visualise the variation in 

the force values seen for the toothpaste and TCTFPS data, whilst the results of Figure 7 do not show 

the same magnitude of variation with values between 2 and 12 J/m2. The micromanipulation 

measurement records the force required to remove the deposit from the surface, and thus measures 

both the surface-deposit interactions and some measure of the rheology of the deposits and how they 

deform. AFM is a more precise measurement, which measures only surface-deposit interactions. The 

difference in the ranges of the two measures suggests that the magnitude of surface interactions varies 

by a larger amount than is shown by the micromanipulation measurements. Figure 8 displays the 

results for the two methods directly, plotting pulling energies against F/R, again showing that the data 

follow the same trends.  

 

The data for the two measurement systems compares well: 

 

 for Turkish delight, both AFM and micromanipulation data record that the fluorinated surface 

shows the greatest adhesion; this agreement shows that both techniques can be used to assess 

adhesion forces between substrates and soils  

 data for stainless steel and glass are more closely matched, but forces measured are greater 

than that for the fluorinated surfaces for caramel, SCM and toothpaste.  The 

micromanipulation measures forces for stainless steel as being larger than for glass, whilst 

AFM records the opposite, perhaps the difference in micron-scale roughness of the two is 

responsible for this effect. 

 

The experiments suggest that micromanipulation data can provide information related to the detail 

shown in the AFM.  That the surprising result for the Turkish delight is measured by both systems 

suggests that they are measuring similar effects, albeit at different length scales.  

 

AFM is a more sensitive measurement method than micromanipulation, and more parameters are 

required to set up experiments, such as the need for the right size particle and the right cantilever 
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stiffness. Also it is not known until the experiment is performed how much vertical range is required 

in the AFM. In comparison micromanipulation is relatively simple to use and set up and most deposits 

are easily compatible, compared to the AFM. Many of the surfaces being developed are however first 

made at the nm scale – these results suggest that it would be possible to predict meso-scale behaviour 

from atomic scale measurement. 

 

Fryer and Asteriadou (2009) have suggested a possible classification of deposits, which could be useful 

if it allows decisions to be made about selection of cleaning protocols. Deposits which fail adhesively 

– by failure at the interface between the deposit and the surface - may well need to be treated 

differently from those, which fail due to breakdown of cohesive interaction (Liu, et al. 2006ab). 
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CONCLUSIONS 

This paper describes experiments in which two method of measuring the forces, which bind fouling 

deposits to surfaces have been compared. Atomic force microscopy works at the nano-scale, whilst 

micromanipulation measures the forces between layers of deposit some mm thick and the surface. A 

series of deposits (toothpaste, caramel, Turkish delight and sweetened condensed milk) have been 

studied which are relevant to problems in the personal care and confectionery industries. 

 

AFM force measurements were performed using modified tipless Si cantilevers attached with a 

microparticle of different surfaces; the tip was engaged to the sample and force measurements taken. 

Micromanipulation experiments required 0.2 g of Turkish delight, caramel, SCM and toothpaste to be 

uniformly spread over the whole surfaces for removal.  

 

The two methods give comparable results; however the range of forces measured by the AFM is much 

greater, reflecting that the micromanipulation measurement includes the force required to deform 

and displace the whole deposit. 

 

AFM and micromanipulation are both beneficial tools for the measure of adhesion. AFM works at the 

nm-scale whilst micromanipulation measures at the µm-mm scale. It is clear that, as found by other 

workers, the surface energy affects the force required for removal. The advantage of the AFM is that 

this is an instrument, which is commonly used in the development and characterisation of new 

materials, which may initially only be available in very small quantities. Measurements using such small 

samples have been shown to be a good prediction of macroscale behaviour – this may help material 

designers identify potentially new antifouling surfaces without having to do experiments at higher 

scale.  
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Figure 1. Illustration of the different length scales of fouling and cleaning, from nm molecular 

interactions to the m-scale of process plant. 
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Figure 2. Cleaning map: shows a range of cleaning issues from the food and personal product 

industries, demonstrating that clusters of similar problems are found. The systems that are most 

difficult to clean are shown in the ringed area (from Fryer and Asteriadou, 2009).  
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Figure 3. Interaction between stainless steel microparticles and caramel, measured using the AFM. 

Data shows local variation of 5 points at each of the 5 regions on the caramel deposit; error bar 

shows the equipment error per measurement. 

 

 

 

  

0

0.1

0.2

0.3

0.4

1 2 3 4 5

F
/R

 (
N

/m
)

Different contact positions (raw data for stainless steel).



 

 15 

caramel 

 
(a) 

 

SCM 

(b)  

 

 

 

  

0

0.1

0.2

0.3

0.4

0.5

�GLASS � STAINLESS STEEL � TCTFPS

F
/

R
 (

N
/

m
)

1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

�GLASS � STAINLESS STEEL � TCTFPS

F
/R

 (
N

/m
)

1 2 3 4 5



 

 16 

Turkish delight 

(c)  

 

 

 

 

toothpaste 

(d)  

 

Figure 4. AFM force measurements. Glass, stainless steel and TCTFPS microparticles were immersed 

in deposits and then retracted. Deposits were spread 50 - 60µm thick on a glass slide. Data shows 

results from five different contact positions (1-5) on the deposits. The approach speed for all 

experiments was 3µm/s, followed by a 5 second pause on deposit and 0.25µm/s retract. Deposits are 

(a) caramel, (b) SCM, (c) Turkish delight, (d) toothpaste;  
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Figure 5. A summary of the forces measured by AFM for the different microparticles and all four 

deposits. 
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Figure 6. Pulling energy for removal of (a) caramel deposit and (b) Turkish delight, using the 

micromanipulation probe. The gap between probe and substrate was kept at 20, 100, 200, 300 and 

400µm, the surfaces used were stainless steel, glass and TCTFPS. 
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Figure 7. Summary of micromanipulation experiments at 20µm cut height of caramel, SCM, Turkish 

delight and toothpaste on glass, stainless steel and TCTFPS.  
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Figure 8. Comparison of data from micromanipulation and AFM, plotted for each deposit type. 
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