3,054 research outputs found

    Lessons for SUSY from the LHC after the first run

    Get PDF
    A review of direct searches for new particles predicted by Supersymmetry after the first run of the LHC is proposed. This review is based on the results provided by the ATLAS and CMS experiments.Comment: 31 pages, 41 figures, Appear in the special issue of the EPJ C journal entitled "SUSY after the Higgs discovery

    Particle Physics and Cosmology

    Full text link
    Today, both particle physics and cosmology are described by few parameter Standard Models, i.e. it is possible to deduce consequence of particle physics in cosmology and vice verse. The former is examined in this lecture, in light of the recent systematic exploration of the electroweak scale by the LHC experiments. The two main results of the first phase of the LHC, the discovery of a Higgs-like particle and the absence so far of new particles predicted by "natural" theories beyond the Standard Model (supersymmetry, extra-dimension and composite Higgs) are put in a historical context to enlighten their importance and then presented extensively. To be complete, a short review from the neutrino physics, which can not be probed at LHC, is also given. The ability of all these results to resolve the 3 fundamental questions of cosmology about the nature of dark energy and dark matter as well as the origin of matter-antimatter asymmetry is discussed in each case.Comment: 32 pages, 47 figures, Proceeding from the 100th Les Houches Summer School on Post-Planck Cosmology, July 8th - Aug 2nd 2013. Update with recently published ATLAS/CMS 8 TeV result

    Commissioning of the ATLAS electromagnetic calorimeter with minimum bias events

    Get PDF
    This note presents the potentiality to commission the ATLAS EM calorimeter during the (very) first days of data taking, prior to be able to trig and identify correctly electrons. For this purpose, a very simple analysis using the ϕ\phi symmetry of the abundant minimum bias events and computing the energy accumulated in the EM calorimeter is proposed. No input from the Monte Carlo is necessary, and only information from the calorimeter is used. To cope with the high number of events, simulation and analysis are performed using the GRID technology. Adopting a simple energy reconstruction scheme based on the cosmic muon experience should allow to spot intrinsic problems of the EM calorimeter in a few days. It should also give first hints on the ϕ\phi dispersion of the Inner Detector material, if the excess is sizeable >10\% X0_0 in a region Δη×Δϕ=0.1×0.1\Delta \eta \times \Delta \phi=0.1\times 0.1. Ultimately, a first flavor of systematics coming from the EM calorimeter ϕ\phi~non-uniformity and its positionning (in the ATLAS framework or with respect to the beam) could be possible

    Comparison between full and fast simulations in top physics

    Get PDF
    All analyses performed in the top quark sector with a full simulation of the ATLAS detector show a good agreement with fast simulation results. The purpose of this note is to understand why detailed detector effects are not so crucial in these studies. A systematic comparison, based on a ``Rome'' Data Challenge fully simulated data sample and an ATLFAST simulated one, is done on all top event objects, electrons, muons, neutrinos, light and b-jets. A very good agreement on reconstructed top kinematics variables is shown. This assess the robustness of the results obtained with fast simulations in the top quark sector, and more particularly the detailed estimates of the related systematic uncertainties, which are the key points of most of these analyses

    Signal reconstruction in the EM end-cap calorimeter and check with cosmic data in the region 0< eta <3.2

    Get PDF
    In 2007, the electromagnetic end-cap calorimeter joined the ATLAS commissioning effort. Since then, calibration and cosmic muon runs are taken regularly, allowing to set-up, debug and test in situ the signal reconstruction. These are the first data in the 1.4500 MeV) have been used to perform a systematic and quantitative comparison between data and predicted physics pulse shapes in a coherent way over the entire calorimeter coverage, 0< eta <3.2. This represents the first attempt to unify barrel and end-cap in situ data in a common analysis. Results are similar in the barrel and the end-cap, only slightly worse for the latter as expected from its more complex geometry. This is the first proof of the quality of an ATLAS-like signal reconstruction in the end-caps, despite its challenging aspect, and gives confidence that the energy reconstruction is in good control over the complete electromagnetic calorimeter coverage 0< eta <3.2

    In situ commissioning of the ATLAS electromagnetic calorimeter with cosmic muons

    Get PDF
    In 2006, ATLAS entered the {\it in situ} commissioning phase. The primary goal of this phase is to verify the detector operation and performance with cosmic muons. Using a dedicated cosmic muon trigger from the hadronic Tile calorimeter, a sample of approximately 120000120\,000 events was collected in several modules of the barrel electromagnetic (EM) calorimeter between August 2006 and March 2007. As cosmic events are generally non-projective and arrive asynchronously with respect to the trigger clock, methods to improve the standard signal reconstruction for this situation are presented. Various selection criteria for projective muons and clustering algorithms have been tested, leading to preliminary results on calorimeter uniformity in η\eta and timing performance

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore