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Abstract

In 2007, the electromagnetic end-cap calorimeter joined the ATLAS commissioning ef-
fort. Since then, calibration and cosmic muon runs are taken regularly, allowing to set-up, debug
and test in situ the signal reconstruction. These are the first data in the 1.4< η <3.2 region since
2001-2002 test beam period. The few % of cosmic events with catastrophic high energy deposits
(typically E >500 MeV) have been used to perform a systematic and quantitative comparison
between data and predicted physics pulse shapes in a coherent way over the entire calorimeter
coverage, 0 < η < 3.2. This represents the first attempt to unify barrel and end-cap in situ data
in a common analysis. Results are similar in the barrel and the end-cap, only slightly worse for
the latter as expected from its more complex geometry. This is the first proof of the quality of
an ATLAS-like signal reconstruction in the end-caps, despite its challenging aspect, and gives
confidence that the energy reconstruction is in good control over the complete electromagnetic
calorimeter coverage 0 < η < 3.2.
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1 Introduction
The EM calorimeter is installed in the ATLAS cavern since the end of 2006. Before the LHC
start, the main challenge is to operate coherently its ∼ 170000 channels, i.e commission the
associated electronics, automate all calibration steps. A smooth reconstruction of the cosmic
muon signals on the full calorimeter coverage (|η| < 3.2) would provide an outstanding result.
The signal reconstruction method is based on an accurate knowledge of the electronic chain
characteristics, that goes from the detector capacitance to the analog shaping in the front end
electronics [1]. It has been developed and tuned with standalone [2, 3] and combined [4] beam
test campaigns, but used and tested mainly on the barrel part.

Cosmic muons can provide a last test bench before the LHC start for this signal recon-
struction procedure. They have already been used recently to partly commission the barrel part,
leading to preliminary results on calorimeter uniformity along η and timing performance [5].
The rate of projective muons in the end-caps is too low to perform such studies. However, the
use of catastrophic high energy deposits, occurring over the entire calorimeter coverage, can
provide a complete cross-check of the reconstruction chain in a coherent way for both barrel
and end-cap parts. This is the purpose of the present note. The end-cap part, much less tested
so far, will have the main focus, and its results will be carefully compared to the barrel ones.
This is particularly important as its geometry is more complicated, with the consequence that
most electrical parameters vary by a factor 2−3 over the end-cap η-coverage whereas they are
almost constant in the barrel. This requires extensive cross-checks to avoid any systematic bias.

This note is organised as follows. Section 2 recalls briefly the main characteristics of the
EM calorimeter and presents the specificities of its end-cap parts. Section 3 details the inputs
needed for the signal reconstruction and estimates the calibration bias and the noise reduction
linked to the method. Section 4 gives the results of the quality checks performed with the
cosmic muon data. Finally, section 5 is dedicated to conclusions.

2 EM calorimeter and main end-cap specificities
The electromagnetic (EM) calorimeter is a lead-liquid argon (LAr) sampling calorimeter with
an accordion geometry [6] that guarantees a full azimuthal coverage. It is divided in one bar-
rel (|η| < 1.475) [7] and two end-caps (1.375 < |η| < 3.2) [8] and is segmented in depth in
three compartments 1. In total, around 170000 read-out channels (101760 in barrel, 62208 in
end-caps and 9344 in presampler) give the detector a high granularity, recalled in Appendix 1.
As illustrated in Figure 1, each of these cells can be modelled as a resonant rLC circuit, where
C corresponds to the cell capacitance, L to the inductive path of the ionisation signal and r to
the contact resistance between detector cell and readout line. These cell characteristics must be
known precisely to control the quality of the signal reconstruction (section 3), as they are not
accounted for by the calibration system, which only shares with physics signals the complete
readout chain (where signals are amplified, shaped, sampled every 25 ns and digitized).

1The thin presampler detector correcting for the energy losses in the upstream material for |η| < 1.8 is not
discussed in this note as no cosmic muon signals can be detected in.
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Figure 1: Schematic electrical model of a LAr cell with its readout chain and calibration net-
work. Shapes of calibration and ionisation signals are illustrated, as well as the output pulse.

Both barrel (EMB) and end-cap (EMEC) parts of the EM calorimeter have an accor-
dion geometry for absorbers and electrodes, and identical calibration and read-out electronics.
However the choice of an accordion shape in the end-cap region induces a more complicated
geometry [8]. First, the EMEC had to be divided in two wheels, called outer (1.375 < |η|< 2.5)
and inner (2.5 < |η| < 3.2) wheels, both projective in η. Then, as outlined in Table 1, most of
the design parameters vary smoothly along the radius direction (corresponding to η), typically
by a factor 2−3, whereas they are almost constant in the barrel 2 : liquid argon gap, accordion
wave amplitudes, bending angles, etc. This is therefore also the case for the ion drift time in
liquid argon and for the signal sampling fraction. To partially compensate for these variations,
the high voltage is set by steps into several high voltage sectors (see Appendix 1). Finally,
the variation of the cell electrical characteristics r, L and C is also important over the end-cap
η-coverage. This will be detailed in the next section, where the implications on the signal re-
construction will be investigated.

Barrel End-caps
Gap (mm) 2.1 3.1 to 0.9

Bending angle (◦) 70 to 90 60 to 120
Drift time (ns) 470 600 to 200

dE/dX sampling fraction (%) 25 or 28 30 to 14
HV (V) 2000 2500 to 1000

S2 Cell inductance L (nH) 25 to 35 50 to 20
S2 Cell Capacitance at cold C (pF) 1400 or 1900 1200 to 600

Table 1: Some geometrical and electrical characteristics of the barrel and end-cap outer wheel
EM calorimeter. In the former case, parameters may vary at |η| = 0.8. In the latter case, the
variation is smooth and given for increasing |η| from 0 to 2.5.

2Some barrel characteristics change at |η| = 0.8, due to the change of lead plate thickness.
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3 Signal reconstruction in the end-caps
This section first introduces the basics of the signal reconstruction method foreseen for barrel
and end-cap EM calorimeters, and then synthesises the present knowledge of the input parame-
ters needed to compute the optimal filtering coefficients for the end-caps. As a first cross-check,
and wherever it is relevant, these inputs are compared to the EM barrel ones. The outputs of the
method, i.e. the predicted physics pulse shapes, the optimal filtering coefficients, the calibration
bias and the noise reduction, are discussed in section 3.2.

3.1 Basics of the method and inputs for the end-caps
The amplitude and time of a cell response to a physics signal are computed using an optimal fil-
tering (OF) technique [9]. In this method, maximum amplitude (Amax) and peak time deviation
from the assumed time (∆t) are linear weighted sums of the n numerized samples Si, in ADC
units after pedestal subtraction :

Amax =
n
∑
i=1

aiSi , Amax∆t =
n
∑
i=1

biSi (1)

The number n of considered samples is 5 or 25 in the following. The computation of the optimal
filtering coefficients ai and bi is performed for 50 phases and for each gain to minimise the noise
contribution. This requires the knowledge of the noise autocorrelation between all samples, ex-
tracted from pedestal runs, and of the output pulse shape and its derivative. The main difficulty
lies in the prediction of the physics pulse shape. This can be done thanks to the calibration
system 3, which sends a well-known exponential signal Icali on the cold electronics plugged on
the detector edge which then follows the same readout path as the physics one (Figure 1). The
output physics pulse gphys(t) can be predicted from the calibration one by factorising the read
out chain transfer function through the following time-domain convolutions [1] 4 :

gphys(t) = gcali(t)×L−1
[

(1+ sτcali)(stdri f t −1+ e−stdri f t )

stdri f t( fstep + sτcali)

]

×L−1
[

1
1+ s2LC + srC

]

(2)

where:
• gcali(t) is the cell response to the exponential calibration signal. This will be described in

section 3.1.1.

• The first term in the Laplace domain takes into account the different input signal shapes
between physics and calibration : exponential, with fstep and τcali as main parameters,
for calibration and triangular, with tdri f t slope time, for physics. They will be detailed in
sections 3.1.2 and 3.1.3, respectively.

• The second term in the Laplace domain takes into account the different injection points
between physics and calibration : the physics current is generated inside the detector
and reaches the cold electronics through an inductive path, while the calibration pulse
is injected on the mother board. This involves the electrical cell parameters r, L and C,
introduced in section 2 and that will be discussed in section 3.1.4.

3An alternative method predicts the ionisation pulse from a complete description of the read-out cell [10].
4The attenuation by skin effect is not considered here as the calibration cable length is constant in the end-cap.
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3.1.1 Cell response to a calibration signal

Typical shapes of cell responses to a same calibration input are shown in Figure 2 (left) for the
three EMEC layers. The differences between shapes are explained by the electrical characteris-
tics of each layer. Notice that, in the finely segmented part of the front sampling, 1.5 < η < 2.4,
the crosstalk between neighbour cells is important, between 3 and 5% [11], and has been taken
into account by adding the two neighbouring cell shapes to the pulsed one. As a global sanity
check, the dispersion along φ of the maximum amplitude of all calibration shapes is shown to
be the same for all layers and exhibits no dependency as a function of η (Figure 2, right).
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Figure 2: Left: Typical calibration pulse shapes at η = 1.8 for an input of 500 DAC units in
high gain. Right: Dispersion over φ of the maximum amplitude of all calibration shapes in high
gain, as a function of η. Front, middle and back cells are represented with red down triangles,
black squares and blue up triangles, respectively.

3.1.2 Calibration board parameters

To obtain an efficient calibration, the input signal should be as similar as possible to the ionisa-
tion triangular pulse. Two main parameters, τcali and fstep, are needed to describe this calibra-
tion input pulse:

Icali
in j (t) = Icali

0 ·θ(t) ·
[

(1− fstep)e
− t

τcali + fstep
]

(3)

where θ(t) is the unit step function. The exponential decay time τcali is chosen to mimic the
decay slope of the ionisation signal, while fstep is related to the resistive component of the in-
ductance in the calibration board [1].

These two parameters need to be known for every calibration board channel. They can
be extracted from measurements in the production laboratories [12] or can be inferred from
the cell response to a calibration pulse using the Response Transformation Method (RTM) [1].
Figure 3 shows a comparison between the two methods for both parameters of one calibration
board. Relative systematic shifts of −7% and +15% using RTM compared to the measured
values are observed for extracted τcali and fstep, respectively, which is as expected in very good
agreement with what was already reported for the barrel. This is probably because RTM gives
effective parameters, absorbing for instance attenuation effects [13, 14]. As not all calibration
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board measurements were available, the RTM extracted parameters are chosen to be consistent.
Notice that choosing the RTM extracted parameters impacts only the absolute energy scale,
which can not be tested very precisely with cosmic data.
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Figure 3: Comparison of τcali (left) and fstep (right) extracted by RTM (open symbols) and
measured directly (closed symbols) for the 128 channels of one calibration board.

3.1.3 Ion drift time in liquid argon gap

The ion drift time in liquid argon gap, tdri f t , can be expressed in terms of applied high voltage
U and gap thickness g [15]:

tdri f t =
g

Vdri f t
∼ gb+1

Ub (4)

where b ∼ 0.4 is a parameter first determined with specific measurements [15] and then cross-
checked with beam tests [16, 17, 18]. As indicated in section 2, the complicated EMEC geom-
etry implies a variation of the gap thickness along η, which induces a varying drift time despite
the change in the high voltage. This is a major difference with the barrel part, for which the
drift time is almost constant around 470 ns for U = 2000 V.

The drift time can be computed using Equation (4) or extracted from a fit to the physic
pulse shapes recorded with test-beam data 5 [17], with a precision estimated around 10%. Fig-
ure 4 shows the measured tdri f t , averaged over φ, as a function of η for all EMEC layers 6. They
are in good agreement with the predictions extracted from Equation (4). Notice that any change
on HV setting conditions implies a change of the drift time in the corresponding region.

3.1.4 Electronic chain characteristics

A thorough program of measurements was carried out at cold on all cells of the EMEC calorime-
ter before installation of the front end electronics to measure their electrical properties as pre-
cisely as possible. By means of a Network Analyser [12], a frequency scan was performed to

5At the beam tests, as events are asynchronous with respect to the clock, the 5 sample physics pulse in a cell
can be averaged within a 1 ns bin by using the phase of each event.

6No measurement was available in the region 1.4 < |η| < 1.6, in which the prediction is therefore taken.
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Figure 4: Drift time as a function of η for front (red down triangles), middle (black squares)
and back (blue up triangles) end-cap layers. All points have been averaged over φ.

extract precisely the resonance frequency of the cell circuit ω0 = 2πν0 = 1/τ0 = 1/
√

LC and
the product τr = rC. In both cases, the most precise measurements were obtained in the second
layer (first layer in the inner wheel), where capacitances are higher. Results are more difficult or
impossible to extract in the first and third layers, and the approximation τ0 = τr = 0 is therefore
used in the following for these samplings.

Resonance frequency
Typical examples of end-cap S2 cell responses to a frequency scan with a Network Anal-

yser are shown in Figure 5 (top). The resonance frequency is clearly visible on the left-hand
plot, and is obtained by fitting a parabola around the minimum. The determination of the reso-
nance frequency can be complicated by the presence of reflections near the peak, as illustrated
in the second column of Figure 5 (top). This situation is even more pronounced when the reso-
nance frequency is higher, i.e. the capacitance and the inductance are low, as for example at high
η in the EMEC outer wheel (fourth column of Figure 5 top). In the last two cases, the resonance
frequency is inferred by fitting the edges of the two minima with straight lines and computing
the intercept point of both lines. To partly overcome this problem, ω0 is not measured for every
cells but averaged over φ at every η. Results are shown in Figure 6 (closed symbols). Their
η-dependency, qualitatively reproduced by individual measurements of L and C [19], reflects
the decrease of L and C as a function of η. This has to be compared to the barrel case, with a
ω0 varying only between 0.13 and 0.19 GHz [12].

Because of the uncertainties in the resonance frequency measurement described above, it
is desirable to extract ω0 with an alternative method, i.e. RTM in this case. The corresponding
output functions 7 are illustrated for the same cells as for the measurements in Figure 5 (bottom).
In all cases, comparable results with measurements are obtained, apart in the third column
where the resonance frequency is 20% higher. Figure 6 shows RTM and measurement results

7The resonance frequency corresponds to the minimum of the function.
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Figure 5: Typical S2 cell responses in the 100-300 MHz frequency range at η = 1.6 (first row),
η = 1.7 (second row), η = 1.8 (third row) and η = 2.2 (fourth row), as measured with a network
analyser (top) and with the RTM method (bottom).

as a function of η in S2. The agreement is good in the regions with high capacitances (η < 1.7
and η > 2.5), close to the barrel situation 8. The situation worsens in the regions with lower
capacitances, i.e. 1.7 < η < 2.5, where the disagreement between RTM and measurements
can reach up to 10-15%. To study the systematic effect on energy measurement linked to this
disagreement, the two different ω0 sets are considered in the following. Results are presented
in details in section 4.2.3.

rC measurement
The product τr = rC can be determined by measuring r and C separately. The r values

can be extracted from the frequency scan measurements by looking at the pulse amplitude at the
resonance frequency [12], whereas C can be taken from direct measurements performed after
EMEC module stacking [19]. Figure 7 shows the τr values obtained by this method as a function
of η. As for the resonance frequency, it is desirable to compare these measurements with the
values extracted by RTM : a large disagreement is obtained, with measurements lower than RTM
values by a factor ∼ 5 (Figure 7). This is because RTM gives effective parameters, i.e. absorb
some additional effects not considered in the LAr readout model [20]. Similar observations are
made in the barrel, with a factor between RTM and measurements of ∼ 2− 3 [21]. However,
the impact on the amplitude determination is very small [1], and the measurements can not be
used to predict the physics shapes, as it generates residual oscillations in the tails [20]. This is
illustrated in Figure 8 in the end-cap case, and is similar for the barrel. As a consequence, RTM
extracted values will be used in the following.

8The agreement between measurements and RTM extracted values at combined test-beam was ∼ 1% for S2,
well compatible with the precision required [4].
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Figure 8: Typical predicted physics pulse shape computed with measured τr (left) and RTM τr
(right) at η = 1.8.

3.1.5 Summary of the inputs

Except tdri f t , all input parameters for signal reconstruction in the end-caps have been either
directly measured or inferred from calibration system through RTM method. The choice made
between both has been discussed in the previous sections. The situation is very similar to the
barrel case for the calibration board parameters fstep and τcali, as well as for τr. It is differ-
ent for ω0 in the regions with a high resonance frequency (1.7 < η < 2.5), which renders the
measurement difficult. To estimate the impact of a mismeasurement of this parameter, two sets
of input parameters are considered, which can further serve to estimate the related systematic
uncertainties on signal reconstruction (section 4.2.3). Table 2 summarises the origin of the in-
put parameters used to predict the physics pulse shapes in the end-caps. The ω0 set coming
from direct measurements will serve as reference in the following, and therefore used unless
otherwise stated.

Outer Wheel Inner Wheel
Parameter S1 S2 S3 S1 S2

fstep RTM RTM RTM RTM RTM
τcali RTM RTM RTM RTM RTM
tdri f t meas. meas. meas. meas. meas.

τr 0 RTM 0 RTM 0
ω0 - Reference 0 meas. 0 meas. 0

ω0 - Set 2 0 RTM 0 RTM 0

Table 2: Origin of input parameters used for signal reconstruction in the end-caps. RTM refers
to the Response Transformation Method [1], which infers the parameters from the cell response
to a calibration pulse. Meas. refers to extensive measurements performed before the installation
of the front end electronics. The two ω0 sets will be used to compute the two sets of optimal
filtering coefficients later tested in the cosmic muon run analysis (section 4).
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3.2 Outputs of the method
3.2.1 Computation of the pulse shapes and optimal filtering coefficients for physics

All input parameters discussed in section 3.1 enter directly in Equation (2) to predict the physics
pulse shape of each EMEC cell. Typical shapes can be seen in Figure 9 (left) for the three EMEC
layers. As a first check on the quality of this prediction, the dispersion along φ of the maximum
amplitude is shown as a function of η for the three layers in Figure 9 (right). It is roughly
constant below 0.1% for S1 and S3 in the precision region (1.5 < |η| < 2.5). It decreases with
η in S2, following the τ0 variation 9. Notice that the same results are obtained with the two
ω0 input sets of Table 2. More quantitative checks of the quality of these predicted shapes are
proposed in section 4.2.2 using cosmic data.
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Figure 9: Left: Typical predicted physics shape at η = 1.8 in high gain. Right: Dispersion over
φ of the maximum amplitude of all physics shapes in high gain, as a function of η. Front, middle
and back cells are represented with red down triangles, black squares and blue up triangles.

From these physics pulse shapes and their derivatives, optimal filtering coefficients (OFC)
ai and bi are computed per cell for each gain and for 50 phases by 1 ns step. This has been done
with 5 or 25 samples and using one of the two input parameter sets of Table 2. Unless otherwise
stated, the case with 5 samples and reference input set is used in the following.

3.2.2 Estimation of the calibration bias

The difference between physics and calibration shapes induces a different response amplitude
to a normalised input signal. The resulting bias must be taken into account in order to correctly
convert ADC counts into energy. This is achieved by using the ratio between the maximum
amplitudes of physics and calibration pulses, called Mphys

Mcali
. It is shown in Figure 10 as a function

of η for the 3 EMEC layers in high gain 10. The decreasing behaviour with η reflects at first
order the cell inductance variation [19] (mainly visible for S2), and at second order the drift
time variation (visible for S1 and S3 where the inductance is assumed to be zero, τ0 = τr = 0).

9It was checked that using τ0 = τr = 0 in S2, results become similar to S1 and S3.
10It was checked that the gain has no impact on the ratio.
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A comparison with Mphys
Mcali

values obtained with 2001-2002 test beam analysis [3] is pro-
posed in Figure 11 (left). The differences are quite important, at the level of 5− 8% in the
region 1.5 < η < 2.4, reflecting the different conditions of both analyses and data takings : ca-
ble lengths, optimal filtering coefficient computations, calibration and front-end electronics, etc.
As a systematic check, it is interesting to make the same comparison between the two ω0 input
sets of Table 2. The agreement is at the percent level, as shown in Figure 11 (right). Finally,
notice that the prediction of this bias on the signal reconstruction method can hardly be checked
with commissioning data, since the absolute muon energy scale is only known at ∼ 5% [5]. The
uncertainties on Mphys

Mcali
ratio will later be absorbed in the inter-calibration coefficients extracted

with electrons from Z decay [22].
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3.2.3 Noise reduction with optimal filtering technique

The computation of the optimal filtering coefficients (OFC) is performed to minimise the noise
contribution to the signal reconstruction. To check this noise reduction, the OFC are applied
to pedestal runs for different number of samples. The noise level obtained using 5 samples in
high gain, averaged over φ, is shown in Figure 12 for the three EMEC layers as a function of η.
In the precision region 1.5 < η < 2.5, weak variations are observed along η and average noise
values of 14, 32 and 27 MeV are measured for the three samplings, respectively. This agrees
nicely with the module test-beam results [16].
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Figure 12: Total noise computed with 5 samples OFC in high gain, averaged over φ and as a
function of η, for front (red down triangles), middle (black squares) and back (blue up triangles)
EMEC cells.

The noise reduction obtained with optimal filtering technique increases with the num-
ber of samples used, as more signal information is available and the noise correlation between
samples is better accounted for. This is illustrated in Figure 13 at η = 1.8 for the three layers.
Reduction factors of 1.5 (1.4) and 2.4 (2.2) are obtained in the second (first) layer using 25
samples compared to 5 and 1, respectively. These results are slightly lower than those obtained
in the barrel, ∼1.8 (1.8) and ∼2.9 (2.6) [5] because of lower capacitances in the end-cap. Fig-
ure 14 shows the noise reduction in S2 as a function of η using 5 (left) and 25 (right) samples
with respect to one single sample. Smooth behaviours are observed in the regions 1.5 < η < 2.5
and 2.5 < η < 3.2. The more pronounced variation for 25 samples is at first order a consequence
of the drift time variation (Figure 4) : a lower drift time gives a shorter waveform. As a con-
sequence, the number of meaningful samples decreases with η, degrading the reduction factor
brought by the optimal filtering technique.
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It is interesting to notice that these results on noise can serve as a benchmark to check
the computation of the physics OFC, and can also point to a wrong latency setting of the read-
out [23]. They therefore give confidence on the quality of the data taking set-up and of the
autocorrelation matrix and OFC computation. This allows to go further, and perform an anal-
ysis of the small signals deposited by cosmic muons over the complete calorimeter coverage,
0 < η < 3.2. This is the subject of the next section.
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Figure 13: Noise as a function of the number of samples used by optimal filtering for the three
EMEC layers in high gain at η = 1.8. Front, middle and back cells are represented with red
down triangles, black squares and blue up triangles.
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4 Checking signal reconstruction in |η|< 3.2 with cosmic data
The first cosmic muon data were registered in the ATLAS cavern in August 2006 by the EM
barrel calorimeter, in the regions equipped with front-end electronics. First studies focused
on these regions (6% of the barrel) and concentrated on projective muon samples [5]. Since
March 2007, one end-cap wheel 11 and the whole barrel are fully operational and take data
regularly. Focusing on some dedicated cosmic muon runs (taken during ”muon” weeks called
M3 and M4 afterwards), it is therefore possible to perform a first study on the almost complete
calorimeter coverage −1.4 < η < 3.2. This is particularly suitable to perform an in situ test
of the signal reconstruction presented in section 3. Even with the limited available statistics
(∼ 150000 triggered events), the selection of the few % of events with catastrophic high energy
deposits (section 4.1) represents a good opportunity to check the signal reconstruction quality
in a coherent way for both barrel and end-cap parts (section 4.2).

4.1 Selection of high energy deposits
Selecting projective muons imposes by default a barrel-restricted analysis. However, consid-
ering only events where a hard enough bremsstrahlung photon deposits its energy in the EM
calorimeter can allow to perform an analysis in the complete coverage |η| < 3.2 : in this case,
the photon induces an electromagnetic shower, detected more easily and independently of the
incident muon projectivity. Moreover, this selects ”electron-like” energies, of the order of the
GeV, which are well suited to test the signal reconstruction procedure.

4.1.1 Conditions of data taking

Since the ATLAS muon trigger was not available on the full coverage (especially in the end-
caps) at the time of data taking, a dedicated trigger, using only Tile calorimeter signals, was
configured to detect cosmic muons. The available Tile towers, ∆η×∆φ = 0.1×0.1, were asked
for a top-bottom coincidence [24] to form the trigger for each data taking period, as shown in
Figure 15. The compromise between noise and a too low trigger rate results in a ∼ 1 GeV
threshold per tower and a ∼ 50% muon purity of the triggered events [5].

The main concern in the present analysis is related to the available statistics. This issue
is strongly correlated with the trigger set-up. Therefore, even if data are taken nearly every
week-end over the whole calorimeter since spring 2007, only runs with stable enough data tak-
ing conditions are selected for this analysis (Table 3). All data were collected in high gain and
∼ 150000 triggered events are available. It should be noticed that, contrarily to the end-caps,
the barrel did not operate under nominal HV but used a reduced value of 1600 V to be better
protected from unstable conditions in the cavern. As a consequence, the optimal filtering coef-
ficients were recomputed and the factor converting ADC to MeV was divided by 0.919 [5].

11the z > 0 side, called ECA wheel. The other side, called ECC wheel, can be integrated in the analyses since
M5 period, i.e. beginning of November.
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Figure 15: Tile trigger setup and logic of the top-bottom coincidence. The extended barrel part
EBC was not available for the runs analysed in this note.

Date # of runs Tile Trigger Triggered # of cells with E> 500 MeV
in 2007 (Run #) (Figure 15) Evts (×103) (analysed evts)

Barrel End-cap
29/06-07/07 5 (14066→14848) EBA 11.2 0 (0%) 490 (100%)
06/09-09/09 6 (23381→24609) LBA, LBC, EBA 71.4 1276 (52%) 593 (100%)
14/09-16/09 6 (24847→24874) LBA, LBC, EBA 66.3 1775 (42%) 373 (68%)
Total 17 – 148.9 3051 (44%) 1456 (86%)

Table 3: Characteristics of cosmic runs used in the analysis: run #, trigger set-up, statistics
and number of cells with E> 500 MeV (see text for more details). For technical reasons (castor
access) and lower statistical limitations, only half of the statistics has been analysed for the
barrel, whereas almost the complete statistics has been analysed for the end-cap.
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4.1.2 Selection criteria

Unless stated otherwise, the energy is reconstructed with optimal filtering technique using
5 samples 12. The conversion factor from ADC counts to MeV, presented in Figure 16, is
computed by factorising the cell gain, Mphys

Mcali
, the injected current from the calibration and the

sampling fraction. A good agreement is obtained with the foreseen values [25].
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Figure 16: ADC to MeV conversion factor (MeV/ADC) as a function of η for front (red down
triangles), middle (black squares) and back (blue up triangles) cells. All points have been
averaged over φ. High gain and the reference input set of Table 2 are used.

To minimise the fluctuations in the signal reconstruction, the energy deposited per cell
should be well above the noise. On the contrary, for statistical reasons, the present analysis can
not be performed if the threshold on the energy is too high, and a good compromise is found
by requiring E > 500 MeV. At this stage, the OFC phase of each cell should be known, i.e. the
iterative process to determine ∆t in Equation (1) should have converged (|∆t|< 1ns). Thanks to
the ”high” energy cut, more than 99% of the cells fulfill this condition. Failing cases are mainly
due to a badly adjusted latency (maximum of the pulse in the first sample).

One of the main difficulty of this analysis is to reject the cells wrongly selected with
high energy, due to high noise or incorrect pedestal subtraction. A simple and robust criterion
to tag these fake cells is to impose that a given cell is selected only once per run, reflecting
the very low probability that randomly produced bremsstrahlung photons deposit their energy
in the same cell twice per run. As only high gain is available, cells with more than 2500
ADC counts 13 after pedestal subtraction are also rejected to avoid saturation effects. After this
selection, ∼1500 cells are selected in the end-cap and ∼3000 in the barrel (Table 3).

12The same calibration constants (pedestal, autocorrelation matrix, ramp) are used for all runs.
13This corresponds roughly to 6 GeV in S1, 35 GeV in S2 and 17 GeV in S3.
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4.1.3 Map of selected cells

The mapping of the selected cells is presented in Figure 17 in the front-end electronic boards
(FEB) coordinates, and Figure 18 in the η−φ plane for each layer. In both barrel and end-cap,
the statistics is almost equally spread in each FEB slot corresponding to the second layer 14. The
increase in top and bottom regions 15, due to the down-going cosmic direction, is clearly visible.
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Figure 17: FEB slot - feedthrough (FT) number mapping of high energetic cells in the barrel C
(left), barrel A (middle) and end-cap A (right). Crosses indicate the unplugged electronics in
the barrel and empty slots or HEC/FCAL slots in the end-cap.
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Figure 18: η − φ map of high energetic cells in S1 (left), S2 (middle) and S3 (right) for
−1.4 < η < 3.2. Crosses indicate the unplugged electronics in the barrel and empty slots or
HEC/FCAL slots in the end-cap.

14FEB slot ≥ 11(10) in the barrel (standard end-cap) crates. In special (HEC) crate FT 2, 9, 15, 21 (3, 10, 16,
22) it corresponds to slot number 3, 4, 10, 11, 14, 15 (2).

15FT 5-10 (4-8) and 21-26 (17-20) for top and bottom in the barrel (end-cap).
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The energy distribution of the selected cells is shown in Figure 19 for the three layers of
the barrel (left) and the end-cap (right). In the barrel, 80% of the statistics is concentrated in S2,
the rest being shared between S1 and S3. In the end-cap, S2 cells represent only 2/3rd of the
statistics, because of the non-projective situation (the photons see the cell size in the η−φ plane
and not the cell depth). The average energies of all distributions are around 1.5 GeV. It can be
noticed that, given the small η size of S1 cells, the selection generally involves a group of cells
per event, rather than isolated cells like in S2 or S3, as seen in Figure 18. This is illustrated
in Figure 20, where a high energy shower (E> 200 GeV) illuminates more than 50 S1 cells at
η ∼ 1.8.
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Figure 19: Energy distribution of selected cells in the barrel (left) and in the end-cap (right).
S1, S2 and S3 cells are represented with red dotted, black full and blue dashed histograms.
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Figure 20: η-φ mapping of a high energy shower (>200 GeV) in S1 at η ∼ 1.8. In this event,
56 cells are above 500 MeV and 18 above the saturation threshold (∼6 GeV).
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4.2 Comparison of predicted physics pulse shapes with data
This section presents a check of the signal reconstruction performed over the full calorimeter
coverage with cosmic data. The method is first explained, and the pulse shape predictions are
then systematically and quantitatively compared to the cosmic data. Finally, the impact in the
end-cap of resonance frequency and drift time uncertainties on the energy reconstruction is
assessed.

4.2.1 Method to superimpose predictions and data

To compare the predicted physics pulse shapes (normalised to one) with the data for all selected
cells, the first step is to multiply the prediction by the maximum amplitude computed with
optimal filtering. Because of different FEB timings and asynchronous muon arrival times, a
global time shift is then determined for each cell by minimising the following χ2 through an
iteration by steps of 25 ns :

χ2 =
n
∑
i=1

(

Adata
i −Amax ∗gphys

i
σnoise

)2

(5)

where n is the number of samples considered, Adata
i is the amplitude of each sample i in ADC

counts for data, Amax is the maximum amplitude defined in Equation (1) and gphys
i is the pre-

dicted physics pulse shape defined in Equation (2). Finally, σnoise corresponds to the noise for
a single sample in ADC counts 16.

After this time adjustment, data and predictions can be compared. Figure 21 shows typical
physics shapes for each sampling (S1, S2 and S3 from top to bottom) in the barrel (left) and in
the end-cap (right). For 5 sample pulse shapes, the predictions agree nicely with the data in the
raising and falling edges of the pulses. More quantitative conclusions are drawn in section 4.2.2.

For 25 samples, apart from the systematic bias observed around the maximum, a fair
agreement is visible in the falling edge and in the undershoot, except for the highest sample
numbers, which was already reported in [5]. A more quantitative discussion on these points is
proposed in section 4.2.4.

16Approximately, 9/3/6 ADC counts in S1/S2/S3 for |η| < 2.5 and 6/5 ADC counts in S1/S2 for |η| > 2.5.
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Figure 21: Typical cell responses in high gain to high energy deposits in the barrel (left) and
end-cap (right) layers (S1, S2 and S3 from top to bottom). The blue (resp. black) curves
correspond to the predicted pulse shapes using 5 (resp. 25) samples.

20



4.2.2 Quality of the predicted pulse shapes

The χ2 proposed in Equation (5) can be used to perform a systematic quantitative comparison
between data and pulse shape predictions over the full η coverage. By construction, this es-
timator of the prediction quality depends on the square of the energy. To allow a comparison
between barrel and end-cap, whose energy spectra per layer are different (Figure 19), it is di-
vided by the square of the reconstructed amplitude, Amax

2. Moreover, only 5 samples (n = 5)
are considered, as this is what will be used to reconstruct the energy in ATLAS. The comparison
with 25 samples will be presented in section 4.2.4.

Results for this estimator of the data/prediction comparison, χ2/Amax
2, are shown in Fig-

ure 22 as a function of the energy for the three layers (S1, S2 and S3 from top to bottom) in
the barrel (left) and in the end-cap (right). It is fitted by the following simple function, which
allows a very good modelling in all layers of the barrel and end-cap parts :

χ2

nsamples ×Amax
2 =

p0
E2 + p1 (6)

The first term, dominating at low energy, is due to the gaussian noise fluctuation for each
sample. It is hardly visible in S1, as the noise in this sampling is lower and already negligible
for a 500 MeV energy deposit. The second term, dominating at high energy where the noise
contribution can be neglected, reflects the quality of the predicted shape as compared with the
data. The results are only slightly better in the barrel compared to the end-cap. This is the
first proof of the quality of an ATLAS-like signal reconstruction in the end-caps, despite its
challenging aspect. This is also illustrated in Figure 23, which shows the pulse shape predic-
tion quality χ2/Amax

2 as a function of η between 0 and 3.2 for the three samplings 17. These
results are obtained by applying a lower energy cut (0.5, 1.5 and 1.2 GeV in S1, S2 and S3
respectively), to minimise the noise contribution, and an upper cut (2500 ADC counts) to avoid
high gain saturation. Again, a smooth behaviour is obtained for both barrel and end-cap, with a
slight worsening in the end-cap (mainly in S3). These results assess the coherence of the signal
reconstruction quality, using 5 samples as foreseen in ATLAS, over the complete calorimeter
coverage 0 < η < 3.2.

It is finally worth mentioning that the computation of the χ2 proposed in Equation (5) will
be performed on-line above a given energy threshold in the Read-Out Driver modules [26], to
control the quality of the signal reconstruction in all cells. This will be useful to mask the most
problematic channels, as it was done in this analysis : a few cells exhibiting a too large χ2 have
been removed from Figures 22 and 23. The reasons leading to these bad physics shape data will
be investigated.

17The absolute values of the quality estimator depend on the injection resistors, which are different between
samplings.
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Figure 22: Estimator χ2/Amax
2 of the quality of the predicted physics pulse shape as a function

of the energy for the barrel (left) and the end-cap (right) in S1, S2 and S3 (top to bottom).
5 samples and high gain are used. The function used for the fit corresponds to Equation (6).
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4.2.3 Main systematic uncertainty in the end-cap signal reconstruction

The main uncertainty from the input parameters concerns the resonance frequency values ω0,
for which the disagreement between different measurement methods can reach up to 10-15%
(section 3.1.4). To estimate quantitatively the impact of this uncertainty on the energy recon-
struction, two sets of optimal filtering coefficients have been built (reference set and set 2 of
Table 2). The relative difference between energies reconstructed with these two sets is shown
in Figure 24(a) as a function of the relative ω0 difference. A first order polynomial can be fitted
with an intercept compatible with zero and a slope around 0.05, reflecting the energy bias for a
given ω0 uncertainty. This is in good agreement with [1], which reported a ∼ 0.05% amplitude
variation for a 1% ω0 variation in the barrel. In the end-cap, even with a maximum 15% uncer-
tainty on ω0, the related systematic uncertainty on the energy is quite low, of the order of 0.5%.

Cosmic data can be used to try to discriminate between both sets of OFC for the end-caps
and choose the more suited one. To achieve this goal, the pulse shape quality estimator χ2/A2

max
(section 4.2.2) is computed for the two sets of OFC calculated with two different ω0 values in
S2. Results are shown for both sets in Figure 24(b) as a function of the energy. No significant
differences are found within the available statistics, which is too low to perform a η-dependent
analysis. The inter-calibration coefficients extracted with electrons from Z decay [22] will be
mandatory to absorb the uncertainties on ω0 and reduce the related systematic error on the
energy to less than 0.2%.
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Figure 24: (Left): relative difference between energies reconstructed with the two sets of opti-
mal filtering coefficients, as a function of the relative difference between their input resonance
frequencies. A linear fit is superimposed. (Right): Estimator χ2/Amax

2 of the quality of the
predicted physics pulse shapes for S2 in the end-cap, as a function of the energy, for the two
sets of optimal filtering coefficients (closed symbols for reference set and open symbols for set
2). The fit is performed on the data from the second set using Equation (6).
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Figure 25: Typical S2 cell responses in high gain to high energy deposits in the end-cap at
different η values. The black curves correspond to the predicted pulse shapes using 25 samples.
For each η, the ion drift time, reflected in the undershoot duration, is indicated.

4.2.4 Influence of the ion drift time on the pulse shape description

The previous sections focused on the quality of the pulse shape prediction with 5 samples, that
will be used to reconstruct the energy in ATLAS. The inspection of the pulse part between the
5th and the 25th samples, including the negative undershoot, allows to go one step further, as it
permits to investigate in more detail the quality of the input parameters needed to predict the
shape. For instance, the undershoot duration is directly linked to the drift time. This is illus-
trated in Figure 25, where typical cell responses are superimposed to the 25 samples predicted
pulse shapes. For increasing η, the reduction of the undershoot duration due to the steep de-
crease of the ion drift time (Figure 4) is clearly visible.
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As a consequence, the description of the part of the pulse shape after the 5th sample is
more difficult, especially in the end-cap. This is also clearly seen in Figure 25, where the under-
shoot prediction is systematically slightly below the data. This induces a bias on the amplitude
reconstruction when a large number of samples is used 18. To quantify this bias, Figure 26 (left)
shows the relative difference between energies reconstructed with 25 or 5 samples in the barrel
(open symbols) and in the end-cap (closed symbols). As expected, the bias is independent on the
energy. It is around −3% in the barrel, in good agreement with what has already been reported
in [5]. This is almost double in the end-cap, reflecting the difficulty to keep completely under
control the steep variations of the signal reconstruction input parameters over the η-coverage
(section 3). This is also seen in Figure 26 (right) that shows the same bias as a function of η.
Flat in the barrel, as expected, the bias is reduced for increasing η in the end-cap outer and inner
wheels. This reflects the decrease of the undershoot duration, which lowers its impact on the
reconstructed energy.
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Figure 26: Relative energy difference between reconstruction with 25 and 5 samples in S2 as
a function of the energy reconstructed with 25 samples (left) and as a function of η (right). In
the left plot, open (closed) symbols represent barrel (end-cap), and p0 is the result of a fit with
a constant value.

As discussed above, a precise determination of the drift time variation along η could im-
prove the pulse shape description between the 5th and the 25th samples. In the end-cap, the
previous measurements were obtained by fitting 125 ns physics pulse shapes in electron beam
tests with a ∼ 10% precision (section 3.1.3). It is therefore interesting to extract the drift time
from cosmic data looking at the 800 ns shapes. This can be done either by measuring the un-
dershoot duration, or its relative height amplitude.

The undershoot duration is estimated by computing the difference between the time of
the first sample with negative amplitude (or the sample with absolute amplitude below -2σ of
the noise) and the first sample with positive amplitude after the undershoot (or the sample with
absolute amplitude above −2σ of the noise). The latter may not exist for cells with high drift

18By construction, positive and negative areas of the pulse are equal.
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time values or for predictions with 25 samples (see Figure 21), and 32 samples are therefore
used for this exercise. However, the measurements with data are spoiled by the low statistics of
events with high enough energies and the associated time jitter, preventing an accurate determi-
nation of the drift time. The latter can also be correlated to the relative height amplitude of the
undershoot r :

r =

AOFC5smax + |1
n

n
∑
i=1

Ai
min|

AOFC5smax
(7)

where n = 5 is the number of samples used to estimate the average of the undershoot height 19.
Figure 27 shows r as a function of the input drift time in the end-cap and in the barrel, as ob-
tained with data and with the predicted physics pulse shapes. The barrel r value is higher than
for the end-cap, reflecting the shape difference in the falling edge (between the 5th and the 9th

samples) observed in Figure 21, which is linked to different capacitance values and signal ca-
ble lengths. In the end-cap, a linear behaviour between r and the input drift time is observed,
both for data and predictions. Data derived r values are systematically lower than those from the
pulse shape prediction. This suggests that the input drift time has been systematically underesti-
mated, as already inferred from Figure 25. However, the statistics is too poor to deconvolute all
second order effects (electric field variation with η, LC dependence, non-projectivity of energy
deposits, . . . ) and extract an enough accurate measurement usable for the signal reconstruction.
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Figure 27: Relative height amplitude of the undershoot r (see text) as a function of the input
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physics pulse shapes are shown. To lower the noise contribution, an energy cut E > 1 GeV is
applied.

19The sample A1
min is located 50 ns after the first sample with negative amplitude.
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5 Conclusions
Because of a complicated geometry, the signal reconstruction in the end-caps of the electro-
magnetic calorimeter is more challenging than in the barrel. In this note, all input ingredients
(except the ion drift time) of the method foreseen in ATLAS have been derived in situ from
calibration data in the three end-cap layers, and compared to direct measurements. They have
been compared extensively to the barrel ones, which can be taken as a reference, as most of
its parameters vary very weakly along η and have been precisely measured. This allowed to
spot and solve some problems, and assess the coherence of the signal reconstruction over the
complete calorimeter coverage.

The next step was to test this signal reconstruction, and before LHC start cosmic muons
are the only data that can be used. The non-projective situation of the end-caps with respect to
such events prevents the use of the muon ionisation energy deposit. However, the selection of
the few % of events with catastrophic high energy deposits (typically E > 500 MeV) is particu-
larly suitable to perform an in situ test of the signal reconstruction. Moreover, this can be done
in a coherent way over the entire calorimeter coverage, 0 < η < 3.2, which represents the first
attempt to unify barrel and end-cap in situ data in a common analysis.

Even with the limited available statistics, a systematic and quantitative comparison be-
tween data and predicted physics pulse shapes has been performed for the three layers of the
EM calorimeter. Results are similar in the barrel and the end-cap, only slightly worse for the
latter as expected from its more complex geometry. This is the first proof of the quality of an
ATLAS-like signal reconstruction in the end-caps, despite its challenging aspect, and gives con-
fidence that the energy reconstruction is in good control over the complete calorimeter coverage
0 < η < 3.2. This could be a real asset for an early discovery in electron or photon channel.

Even if this study could be extended to a systematic search for problematic cells with
more statistics, using the latest M5 and M6 muon week data, high pT isolated electrons from
LHC data will be mandatory for a refined check of the physics pulse shapes in all channels [27],
which will be needed to reach the ultimate performance.
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Appendix 1: EM calorimeter description
The electromagnetic calorimeter granularity is detailed in Table 4. The High-Voltage sector
definitions, consequence of the end-cap geometry, is given in Table 5.

Front (S1) Middle (S2) Back (S3)
|η| ≤ 1.35 0.025/8×0.1 0.025×0.025 0.050×0.025

Barrel 1.35 ≤ |η| ≤ 1.4 0.025/8×0.1 0.025×0.025 –
1.4 ≤ |η| ≤ 1.475 0.025×0.025 0.075×0.025 –
1.375 ≤ |η| ≤ 1.425 0.050×0.1 0.050×0.025 –
1.425 ≤ |η| ≤ 1.5 0.025×0.1 0.025×0.025 –
1.5 ≤ |η| ≤ 1.8 0.025/8×0.1 0.025×0.025 0.050×0.025

End-caps 1.8 ≤ |η| ≤ 2.0 0.025/6×0.1 0.025×0.025 0.050×0.025
2.0 ≤ |η| ≤ 2.4 0.025/4×0.1 0.025×0.025 0.050×0.025
2.4 ≤ |η| ≤ 2.5 0.025×0.1 0.025×0.025 0.050×0.025
2.5 ≤ |η| ≤ 3.2 – 0.1×0.1 0.1×0.1

Table 4: Granularity ∆η×∆φ for each calorimeter sampling (Front, Middle and Back).

Barrel End-cap outer wheel
HV region 0 1 2 3 4 5 6 7

η range 0-1.475 1.375-1.5 1.5-1.6 1.6-1.8 1.8-2.0 2.0-2.1 2.1-2.3 2.3-2.5
HV values 2000 V 2500 V 2300 V 2100 V 1700 V 1500 V 1250 V 1000 V

Table 5: The high voltage regions of the barrel and end-cap outer wheel EM calorimeter.
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