3,416 research outputs found

    BRST Operator for Quantum Lie Algebras: Relation to Bar Complex

    Full text link
    Quantum Lie algebras (an important class of quadratic algebras arising in the Woronowicz calculus on quantum groups) are generalizations of Lie (super) algebras. Many notions from the theory of Lie (super)algebras admit ``quantum'' generalizations. In particular, there is a BRST operator Q (Q^2=0) which generates the differential in the Woronowicz theory and gives information about (co)homologies of quantum Lie algebras. In our previous papers a recurrence relation for the operator Q for quantum Lie algebras was given and solved. Here we consider the bar complex for q-Lie algebras and its subcomplex of q-antisymmetric chains. We establish a chain map (which is an isomorphism) of the standard complex for a q-Lie algebra to the subcomplex of the antisymmetric chains. The construction requires a set of nontrivial identities in the group algebra of the braid group. We discuss also a generalization of the standard complex to the case when a q-Lie algebra is equipped with a grading operator.Comment: 20 page

    Multiloop Superstring Amplitudes from Non-Minimal Pure Spinor Formalism

    Get PDF
    Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of θ\theta's.Comment: 23 pages harvmac, added acknowledgemen

    Two-Dimensional Twisted Sigma Models, the Mirror Chiral de Rham Complex, and Twisted Generalised Mirror Symmetry

    Full text link
    In this paper, we study the perturbative aspects of a "B-twisted" two-dimensional (0,2)(0,2) heterotic sigma model on a holomorphic gauge bundle E\mathcal E over a complex, hermitian manifold XX. We show that the model can be naturally described in terms of the mathematical theory of ``Chiral Differential Operators". In particular, the physical anomalies of the sigma model can be reinterpreted as an obstruction to a global definition of the associated sheaf of vertex superalgebras derived from the free conformal field theory describing the model locally on XX. In addition, one can also obtain a novel understanding of the sigma model one-loop beta function solely in terms of holomorphic data. At the (2,2)(2,2) locus, one can describe the resulting half-twisted variant of the topological B-model in terms of a mirror\it{mirror} "Chiral de Rham complex" (or CDR) defined by Malikov et al. in \cite{GMS1}. Via mirror symmetry, one can also derive various conjectural expressions relating the sheaf cohomology of the mirror CDR to that of the original CDR on pairs of Calabi-Yau mirror manifolds. An analysis of the half-twisted model on a non-K\"ahler group manifold with torsion also allows one to draw conclusions about the corresponding sheaves of CDR (and its mirror) that are consistent with mathematically established results by Ben-Bassat in \cite{ben} on the mirror symmetry of generalised complex manifolds. These conclusions therefore suggest an interesting relevance of the sheaf of CDR in the recent study of generalised mirror symmetry.Comment: 97 pages. Companion paper to hep-th/0604179. Published versio

    Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review

    Get PDF
    © 2021 The Author(s). The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However, commercially practiced pathways to hydrogen production todays, are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international commitment to reduce carbon emissions within the forthcoming decades. A sustainable hydrogen future would only be achievable if hydrogen production is “designed” to capture such emissions. Today, nearly 98% of global hydrogen production relies on the utilisation of fossil fuels. Among these, steam methane reforming (SMR) boasts the biggest share of nearly 50% of the global generation. SMR processes correspond to a significant amount of carbon emissions at various points throughout the process. Despite the dark side of the SMR processes, they are projected to play a major role in hydrogen production by the first half of this century. This that a sustainable, yet clean short/medium-term hydrogen production is only possible by devising a plan to efficiently capture this co-produced carbon as stated in the latest International Energy Agency (IEA) reports. Here, we have carried out an in-depth technical review of the processes employed in sorption-enhanced steam methane reforming (SE-SMR), an emerging technology in low-carbon SMR, for combined carbon capture and hydrogen production. This paper aims to provide an in-depth review on two key challenging elements of SE-SMR i.e. the advancements in catalysts/adsorbents preparation, and current approaches in process synthesis and optimisation including the employment of artificial intelligence in SE-SMR processes. To the best of the authors’ knowledge, there is a clear gap in the literature where the above areas have been scrutinised in a systematic and coherent fashion. The gap is even more pronounced in the application of AI in SE-SMR technologies. As a result, this work aims to fill this gap within the scientific literature.Engineering and Physical Sciences Research Council (EPSRC) (project “Multiphysics and multiscale modelling for safe and feasible CO2 capture and storage - EP/T033940/1”); UK Research and Innovation (UKRI)

    Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    Full text link
    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04), Chicago, IL, June 27 - July 3, 200

    Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−

    Get PDF
    A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL

    Observation of the decay BcJ/ψK+Kπ+B_c \rightarrow J/\psi K^+ K^- \pi^+

    Get PDF
    The decay BcJ/ψK+Kπ+B_c\rightarrow J/\psi K^+ K^- \pi^+ is observed for the first time, using proton-proton collisions collected with the LHCb detector corresponding to an integrated luminosity of 3fb1^{-1}. A signal yield of 78±1478\pm14 decays is reported with a significance of 6.2 standard deviations. The ratio of the branching fraction of \B_c \rightarrow J/\psi K^+ K^- \pi^+ decays to that of BcJ/ψπ+B_c \rightarrow J/\psi \pi^+ decays is measured to be 0.53±0.10±0.050.53\pm 0.10\pm0.05, where the first uncertainty is statistical and the second is systematic.Comment: 18 pages, 2 figure

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Observation of the decay B+c→Bºsπ+

    Get PDF
    The result of a search for the decay B+c→Bºsπ+ is presented, using the Bºs→Ds-π+ and Bºs→J/ψϕ channels. The analysis is based on a data sample of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of 1  fb-1 taken at a center-of-mass energy of 7 TeV, and 2  fb-1 taken at 8 TeV. The decay B+c→Bºsπ+ is observed with significance in excess of 5 standard deviations independently in both decay channels. The measured product of the ratio of cross sections and branching fraction is [σ(Bc+)/σ(Bºs)]×B(Bc+→Bºsπ+)=[2.37±0.31 (stat)±0.11 (syst)-0.13+0.17(τBc+)]×10-3, in the pseudorapidity range 2<η(B)<5, where the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the Bc+ lifetime. This is the first observation of a B meson decaying to another B meson via the weak interaction

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore