804 research outputs found

    Body condition changes at sea: onboard calculation and telemetry of body density in diving animals

    Get PDF
    This study was supported by grants from the Office of Naval Research N00014-18-1-2822, DoD SERDP contract W912HQ20C0056, IPEV (Institut Paul Emile Victor) under the Antarctic research program 109 (C. Barbraud) and 1201 (C. Gilbert & C. Guinet), and CNES-TOSCA as part of the SNO-MEMO.The ability of marine mammals to accumulate sufficient lipid energy reserves is vital for mammals' survival and successful reproduction. However, long-term monitoring of at-sea changes in body condition, specifically lipid stores, has only been possible in elephant seals performing prolonged drift dives (low-density lipids alter the rates of depth change while drifting). This approach has limited applicability to other species. Using hydrodynamic performance analysis during transit glides, we developed and validated a novel satellite-linked data logger that calculates real-time changes in body density (∝lipid stores). As gliding is ubiquitous amongst divers, the system can assess body condition in a broad array of diving animals. The tag processes high sampling rate depth and three-axis acceleration data to identify 5 s high pitch angle glide segments at depths >100 m. Body density is estimated for each glide using gliding speed and pitch to quantify drag versus buoyancy forces acting on the gliding animal. We used tag data from 24 elephant seals (Mirounga spp.) to validate the onboard calculation of body density relative to drift rate. The new tags relayed body density estimates over 200 days and documented lipid store accumulation during migration with good correspondence between changes in body density and drift rate. Our study provided updated drag coefficient values for gliding (Cd,f = 0.03) and drifting (Cd,s = 0.12) elephant seals, both substantially lower than previous estimates. We also demonstrated post-hoc estimation of the gliding drag coefficient and body density using transmitted data, which is especially useful when drag parameters cannot be estimated with sufficient accuracy before tag deployment. Our method has the potential to advance the field of marine biology by switching the research paradigm from indirectly inferring animal body condition from foraging effort to directly measuring changes in body condition relative to foraging effort, habitat, ecological factors and anthropogenic stressors in the changing oceans. Expanding the method to account for diving air volumes will expand the system's applicability to shallower-diving (<100 m) species, facilitating real-time monitoring of body condition in a broad range of breath-hold divers.Publisher PDFPeer reviewe

    Space-like (vs. time-like) collinear limits in QCD: is factorization violated?

    Get PDF
    We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e.g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum and colour charge of the non-collinear partons. We present explicit results on one-loop and two-loop amplitudes for both the two-parton and multiparton collinear limits. At the level of square amplitudes and, more generally, cross sections in hadron--hadron collisions, the violation of strict collinear factorization has implications on the non-abelian structure of logarithmically-enhanced terms in perturbative calculations (starting from the next-to-next-to-leading order) and on various factorization issues of mass singularities (starting from the next-to-next-to-next-to-leading order).Comment: 81 pages, 5 figures, typos corrected in the text, few comments added and inclusion of NOTE ADDED on recent development

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN
    corecore