111 research outputs found

    Exposure to maternal cafeteria diets during the suckling period has greater effects on fat deposition and Sterol regulatory element binding protein-1c (SREBP-1c) gene expression in rodent offspring compared to exposure before birth

    Get PDF
    Background: While the adverse metabolic effects of exposure to obesogenic diets during both the prenatal and early postnatal period are well established, the relative impact of exposure during these separate developmental windows remains unclear. Objective: This study aimed to assess the relative contribution of exposure to a maternal cafeteria diet during pregnancy and lactation on body weight, fat mass and expression of lipogenic and adipokine genes in the offspring. Methods: Wistar rats were fed either a control chow (Control, n=14) or obesogenic cafeteria diet (CAF, n=12) during pregnancy and lactation. Pups were cross-fostered to another dam in either the same or different dietary group within 24 h of birth. Body weight, body fat mass and expression of lipogenic and adipokine genes in subcutaneous and visceral adipose tissues were determined in offspring at weaning and 3 weeks post-weaning. Results: Offspring suckled by CAF dams had a lower body weight (

    Systematic Study of Fermion Masses and Mixing Angles in Horizontal SU(2) Gauge Theory

    Full text link
    Despite its great success in explaining the basic interactions of nature, the standard model suffers from an inability to explain the observed masses of the fundamental particles and the weak mixing angles between them. We shall survey a set of possible extensions to the standard model, employing an SU(2) ``horizontal'' gauge symmetry between the particle generations, to see what light they can shed on this problem.Comment: 43 pages, 4 figures (available by postal mail on request), OZ-92/0

    Frustration and the Kondo effect in heavy fermion materials

    Full text link
    The observation of a separation between the antiferromagnetic phase boundary and the small-large Fermi surface transition in recent experiments has led to the proposal that frustration is an important additional tuning parameter in the Kondo lattice model of heavy fermion materials. The introduction of a Kondo (K) and a frustration (Q) axis into the phase diagram permits us to discuss the physics of heavy fermion materials in a broader perspective. The current experimental situation is analysed in the context of this combined "QK" phase diagram. We discuss various theoretical models for the frustrated Kondo lattice, using general arguments to characterize the nature of the ff-electron localization transition that occurs between the spin liquid and heavy Fermi liquid ground-states. We concentrate in particular on the Shastry--Sutherland Kondo lattice model, for which we establish the qualitative phase diagram using strong coupling arguments and the large-NN expansion. The paper closes with some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT

    Angular Resolution of the Pachmarhi Array of Cerenkov Telescopes

    Get PDF
    The Pachmarhi Array of Cerenkov Telescopes consists of a distributed array of 25 telescopes that are used to sample the atmospheric Cerenkov Photon showers. Each telescope consists of 7 parabolic mirrors each viewed by a single photo-multiplier tube. Reconstruction of photon showers are carried out using fast timing information on the arrival of pulses at each PMT. The shower front is fitted to a plane and the direction of arrival of primary particle initiating the shower is obtained. The error in the determination of the arrival direction of the primary has been estimated using the {\it split} array method. It is found to be 2.4 \sim 2.4^\prime ~ for primaries of energy >3T˜eV > 3 \~TeV. The dependence of the angular resolution on the separation between the telescopes and the number of detectors are also obtained from the data.Comment: 26 pages, 11 Postscript figures; uses elsart.cls. To appear in Astroparticle Physic

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore