125 research outputs found

    Resonant Destruction as a Possible Solution to the Cosmological Lithium Problem

    Full text link
    We explore a nuclear physics resolution to the discrepancy between the predicted standard big-bang nucleosynthesis (BBN) abundance of 7Li and its observational determination in metal-poor stars. The theoretical 7Li abundance is 3-4 times greater than the observational values, assuming the baryon-to-photon ratio, eta_wmap, determined by WMAP. The 7Li problem could be resolved within the standard BBN picture if additional destruction of A=7 isotopes occurs due to new nuclear reaction channels or upward corrections to existing channels. This could be achieved via missed resonant nuclear reactions, which is the possibility we consider here. We find some potential candidate resonances which can solve the lithium problem and specify their required resonant energies and widths. For example, a 1^- or 2^- excited state of 10C sitting at approximately 15.0 MeV above its ground state with an effective width of order 10 keV could resolve the 7Li problem; the existence of this excited state needs experimental verification. Other examples using known states include 7Be+t \rightarrow 10B(18.80 MeV), and 7Be+d \rightarrow 9B(16.71 MeV). For all of these states, a large channel radius (a > 10 fm) is needed to give sufficiently large widths. Experimental determination of these reaction strengths is needed to rule out or confirm these nuclear physics solutions to the lithium problem.Comment: 37 pages, 9 figures. Additional discussion of channel widths and radii. Matches published versio

    A Decentralized Federated Learning using Reputation

    Get PDF
    Nowadays Federated learning (FL) is established as one of the best techniques for collaborative machine learning. It allows a set of clients to train a common model without disclosing their sensitive and private dataset to a coordination server. The latter is in charge of the model aggregation. However, FL faces some problems, regarding the security of updates, integrity of computation and the availability of a server. In this paper, we combine some new ideas like clients’ reputation with techniques like secure aggregation using Homomorphic Encryption and verifiable secret sharing using Multi-Party Computation techniques to design a decentralized FL system that addresses the issues of incentives, security and availability amongst others. One of the original contributions of this work is the new leader election protocol which uses a secure shuffling and is based on a proof of reputation. Indeed, we propose to select an aggregator among the clients participating to the FL training using their reputations. That is, we estimate the reputation of each client at every FL iteration and then we select the next round aggregator from the set of clients with the best reputations. As such, we remove misbehaving clients (e.g., byzantines) from the list of clients eligible for the role of aggregation server

    Practical Multi-Key Homomorphic Encryption for More Flexible and Efficient Secure Federated Aggregation (preliminary work)

    Get PDF
    In this work, we introduce a lightweight communication-efficient multi-key approach suitable for the Federated Averaging rule. By combining secret-key RLWE-based HE, additive secret sharing and PRFs, we reduce approximately by a half the communication cost per party when compared to the usual public-key instantiations, while keeping practical homomorphic aggregation performances. Additionally, for LWE-based instantiations, our approach reduces the communication cost per party from quadratic to linear in terms of the lattice dimension

    Practical Multi-Key Homomorphic Encryption for More Flexible and Efficient Secure Federated Aggregation (preliminary work)

    Get PDF
    In this work, we introduce a lightweight communication-efficient multi-key approach suitable for the Federated Averaging rule. By combining secret-key RLWE-based HE, additive secret sharing and PRFs, we reduce approximately by a half the communication cost per party when compared to the usual public-key instantiations, while keeping practical homomorphic aggregation performances. Additionally, for LWE-based instantiations, our approach reduces the communication cost per party from quadratic to linear in terms of the lattice dimension

    Higher D or Li: Probes of Physics beyond the Standard Model

    Full text link
    Standard Big Bang Nucleosynthesis at the baryon density determined by the microwave anisotropy spectrum predicts an excess of \li7 compared to observations by a factor of 4-5. In contrast, BBN predictions for D/H are somewhat below (but within ~2 \sigma) of the weighted mean of observationally determined values from quasar absorption systems. Solutions to the \li7 problem which alter the nuclear processes during or subsequent to BBN, often lead to a significant increase in the deuterium abundance consistent with the highest values of D/H seen in absorption systems. Furthermore, the observed D/H abundances show considerable dispersion. Here, we argue that those systems with D/H \simeq 4 \times 10^{-5} may be more representative of the primordial abundance and as a consequence, those systems with lower D/H would necessarily have been subject to local processes of deuterium destruction. This can be accounted for by models of cosmic chemical evolution able to destroy in situ Deuterium due to the fragility of this isotope.Comment: 22 pages, 8 figure

    Exploiting inflammation for therapeutic gain in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy associated with <5% 5-year survival, in which standard chemotherapeutics have limited benefit. The disease is associated with significant intra- and peritumoral inflammation and failure of protective immunosurveillance. Indeed, inflammatory signals are implicated in both tumour initiation and tumour progression. The major pathways regulating PDAC-associated inflammation are now being explored. Activation of leukocytes, and upregulation of cytokine and chemokine signalling pathways, both have been shown to modulate PDAC progression. Therefore, targeting inflammatory pathways may be of benefit as part of a multi-target approach to PDAC therapy. This review explores the pathways known to modulate inflammation at different stages of tumour development, drawing conclusions on their potential as therapeutic targets in PDAC

    The Star-Forming Galaxy Contribution to the Cosmic MeV and GeV Gamma-Ray Background

    Full text link
    While star-forming galaxies could be major contributors to the cosmic GeV Îł\gamma-ray background, they are expected to be MeV-dim because of the "pion bump" falling off below ~100 MeV. However, there are very few observations of galaxies in the MeV range, and other emission processes could be present. We investigate the MeV background from star-forming galaxies by running one-zone models of cosmic ray populations, including Inverse Compton and bremsstrahlung, as well as nuclear lines (including 26^{26}Al), emission from core-collapse supernovae, and positron annihilation emission, in addition to the pionic emission. We use the Milky Way and M82 as templates of normal and starburst galaxies, and compare our models to radio and GeV--TeV Îł\gamma-ray data. We find that (1) higher gas densities in high-z normal galaxies lead to a strong pion bump, (2) starbursts may have significant MeV emission if their magnetic field strengths are low, and (3) cascades can contribute to the MeV emission of starbursts if they emit mainly hadronic Îł\gamma-rays. Our fiducial model predicts that most of the unresolved GeV background is from star-forming galaxies, but this prediction is uncertain by an order of magnitude. About ~2% of the claimed 1 MeV background is diffuse emission from star-forming galaxies; we place a firm upper limit of <~10% based on the spectral shape of the background. The star-formation contribution is constrained to be small, because its spectrum is peaked, while the observed background is steeply falling with energy through the MeV-GeV range.Comment: Published in ApJ, 27 pages, emulateapj format. Readers may be interested in the concurrent paper by Chakraborty and Fields (arXiv:1206.0770), a calculation of the Inverse Compton background from star-forming galaxie

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Review of particle physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.Ibi.gov
    • 

    corecore