
Practical Multi-Key Homomorphic Encryption for More
Flexible and Efficient Secure Federated Aggregation

(preliminary work)

A. Pedrouzo-Ulloa1,2, Aymen Boudguiga2, Olive Chakraborty2, Renaud Sirdey2, Oana Stan2,
and Martin Zuber2

1 atlanTTic Research Center, Universidade de Vigo
apedrouzo@gts.uvigo.es

2 CEA-List, Université Paris-Saclay
alberto.pedrouzoulloa@cea.fr, name.surname@cea.fr

Abstract. In this work, we introduce a lightweight communication-efficient multi-key approach
suitable for the Federated Averaging rule. By combining secret-key RLWE-based HE, additive
secret sharing and PRFs, we reduce approximately by a half the communication cost per party when
compared to the usual public-key instantiations, while keeping practical homomorphic aggregation
performances. Additionally, for LWE-based instantiations, our approach reduces the communication
cost per party from quadratic to linear in terms of the lattice dimension.

1 Introduction

As a protocol for training neural networks (NNs) without explicit sharing of learning data,
Federated Learning (FL) has received a lot of attention since its inception around 2017 [8].
In a nutshell, starting from an initial common NN model, the FL protocol iteratively builds a
global model by having the training data owners (i.e., the clients) locally updating the model
by the partial execution of a training algorithm, and then, letting a central server aggregating
these updates to generate the common model for the next round. FL can be instantiated in the
cross-device setting, where a model is built from the data of many intermittently available and
computationally constrained devices, or cross-silo, in which a model is built from the training
sets of a reduced number of servers which are always available and computationally powerful.
This paper focuses primarily on the latter of these two settings.

Federated Learning was initially proposed as a solution for avoiding the prohibitive commu-
nication cost of getting training data out of many user devices as well as for ensuring training
data privacy. However, it is now well-known that the baseline FL protocol is not sufficient for
guaranteeing the privacy of a client’s training data, as the NN parameters updates exchanged
throughout the protocol (seen by both the aggregation server and the other clients) leak a lot
of information. As a consequence, in recent years, FL has been more deeply investigated with
respect to training data privacy. In this context, performing updates aggregation by means of
Homomorphic Encryption (HE) has been investigated from the viewpoint of countering the con-
fidentiality threats from the server on the clients’ training data. Yet, from an HE perspective,
previous works (e.g. [10, 7]) have focused primarily on performance issues and implicitly assumed
overly simple deployment scenarios e.g. with all the encrypted-domain calculations performed
under the same HE keys and all clients sharing the same decryption key in a honest-but-curious
setting. In this paper, we introduce a lightweight communication-efficient multi-key approach
suitable for the Federated Averaging rule, allowing each client to use its own key for encryption
at each round and the effective subset of clients which participated in a round to collectively
decrypt the aggregated updates to further proceed with the next protocol iteration.

Main Contributions: Our proposed aggregation method is secure in the semi-honest setting
and works under the Common Reference String (CRS) model. By combining secret-key RLWE-
based HE and PRFs, we reduce approximately by a half the communication cost per party when



comparing with its public-key counterpart. This improvement is more significant for LWE-based
instantiations, in which thanks to the removal of the mask component for secret-key LWE
samples, the communication cost per party is reduced from quadratic into linear in terms of the
lattice dimension n. A high-level comparison among different available aggregation methods and
ours is included in Table 1 for a FL training of NAggRounds rounds with L participants.

Protection Method Comm. Cost Security Issues + other consider-
ations

Protected inputs

Additive secret sharing O(NAggRounds · L2) Avoids collusion with aggregator Same as plaintext space

Needs new shares per each round

Public-Key HE (single-key) O(NAggRounds · L) Collusion with aggregator Public-Key ctxts. (2 pol.
elem. if RLWE)

Who holds the secret key?

Threshold HE O(NAggRounds · L) +
CostPKGSetup

Avoids collusion with aggregator Public-Key ctxts. (2 pol.
elem. if RLWE)

Requires to generate a new pub-
lic key for users not collaborating

Proposed Method O(NAggRounds · L) +

(L − 1)2
Avoids collusion with aggregator Secret-Key Ctxts. (1 pol.

elem. if RLWE)

1 extra round to manage non-
participating users in decryption

Table 1. Comparison between different protection methods for secure aggregation in FL.

Threat Model: In the semi-honest (or honest-but-curious) model, many entities (E1, . . . ,EL),
having as secret information (s1, . . . , sL), participate in a protocol P to compute a function
F(s1, . . . , sL). Each entity Ei:i∈J1,LK tries to gather as much information as possible, but do not
deviate from the protocol P (i.e., Ei:i∈J1,LK will try to recover information about the secrets sj:j ̸=i

of other entities). Then we say that P is secure in the semi-honest model if each Ei:i∈J1,LK has no
other information than F(s1, . . . , sL) at the end of the protocol. Note that assuming semi-honest
adversaries in P does not guarantee that no parties will collude [6].

In this work, we provide a solution for secure aggregation in FL with a semi-honest server
(and up to L−1 semi-honest Data Owners if paired with differential privacy techniques). First,
we assume a CRS model, where all Data Owners (DOs) have access to the same PRF. Using the
same PRF with the same seed ensures that all DOs will generate the same mask a each round for
their distinct RLWE samples. Second, we assume that DOs will have distinct secret keys. That
is, each DO will encrypt her own data mi with her own secret key si (but using the same mask
a per round shared with other DOs). Finally, during the aggregation, the semi-honest server
will compute the encrypted sum

∑
imi with the aggregated secret key

∑
i si.

For a more realistic FL setting, our secure aggregation scheme can be seamlessly coupled
with differential privacy techniques, as in [10], to cover threats coming from L − 1 colluding
semi-honest DOs (out of L) that aim at gathering information about the remaining DO data.

2 Building Blocks

Additive Secret Shares of Zero. Given L Data Owners (DOs), we can generate L uniformly
random additive shares satisfying that their addition is equal to zero. The protocol is as follows:

1. The i-th DO (∀i) generates a set of (L− 1) uniformly random elements ri,j for all j ̸= i.
Next, the i-th DO computes ri,i = −(

∑
j:j ̸=i ri,j). All ri,j satisfy the relation

∑
j ri,j = 0.

2. The i-th DO (∀i) sends, ri,j to the j-th party, ∀j.
3. The i-th DO (∀i) computes sharei = r(i) =

∑
j ri,j .

Rounding polynomial elements. Let ⌊a⌉p be the scaling and rounding of each coefficient of

a ∈ RN
q to its nearest integer, where Rq denotes the quotient polynomial ring Zq[x]/(x

n + 1).

Lemma 1 (Lemma 1 [3]). Let p|q, x ← RN
q and y = x + e mod q for some e ∈ RN

q with

∥e∥∞ < B < q/p. Then Pr
(
⌊y⌉p ̸= ⌊x⌉p mod p

)
≤ 2npNB

q .



This lemma is used in our scheme (see Section 3) to remove the error term associated to each
encryption. Given (a, b = as+e+q/p·m), we compute ⌊b⌉p = ⌊as+ e⌉p+m which, by Lemma 1,
is equal to ⌊as⌉p + m with a certain probability Pr(Ev). The upper bound of the probability
Pr(Ev) depends inversely on q.

Distributed Decryption. Given (a, b = as+ e) ∈ R2
q s.t. s =

∑L
i=1 si where all si ∈ Rq, applying

modulus switching [1] from q into p, we get
(
⌊a⌉p , ⌊b⌉p =

⌊
⌊a⌉p s+ (p/q · a− ⌊a⌉p) · s+ p/q · e

⌉)
.

By applying Lemma 1, the error therm e is removed with a certain probability, finally having:

⌊b⌉p =

a s︸︷︷︸∑
i si


p

=

⌊a⌉p s︸︷︷︸∑
i si

+(p/q · a− ⌊a⌉p)︸ ︷︷ ︸
ea

· s︸︷︷︸∑
i si

 . (1)

From equation (1), we can obtain the magnitude of the difference edistributed = ⌊as⌉p −∑
i ⌊asi⌉p. This term must be removed for the correctness of the distributed decryption protocol

executed after each aggregation round. Assuming that each si is bounded by B, and due to
∥ea∥∞ < 1/2, the magnitude of this remaining error term is bounded by nLB.

3 Proposed scheme for secure aggregation

Current works making use of Threshold RLWE-based HE [9, 2] define a collaborative key setup
phase to generate a joint public key pk associated to several secret keys si. This results in a pair
(sk = s, pk = (a, as+ e)), where each i-th DO has a si s.t.,

∑L
i=1 si = s.

We optimize this primitive for the case of secure federated average aggregation: by assum-
ing the CRS model, ciphertexts can be aggregated on-the-fly, similarly to real “multi-key” HE
schemes. We include next a high-level description of our proposed secure aggregation primitive.

3.1 High-level description

In the CRSmodel, each party (a.k.a Data Owner, DO) has access to a common uniformly random
polynomial term a per round. Additionally, we assume that all DOs have run the protocol
described in Section 2 to generate uniformly random polynomial shares. As a consequence, each
i-th DO holds sharei = r(i). Then, each secure aggregation round is as follows:

1. DOs encrypt their inputs: The i-th DO (∀i) encrypts its model update mi with its secret

key si as (a, bi) = (a, a(si+ r(i))+ ei+ q/p ·mi)), which can be compressed by a half by only
sending bi because a is publicly known (i.e., computable with PRFK(T ) for the T -th round).

2. Aggregation step: After receiving all bi polynomial terms, a semi-honest aggregator can
directly compute:

(a,
∑
i

bi) = (a, b = a(s+
∑
i

r(i)︸ ︷︷ ︸
0

) + e) = (a, b = a s︸︷︷︸∑
i si

+ e︸︷︷︸∑
i ei

+q/p · m︸︷︷︸∑
i mi

),

which corresponds to Enc(sk = s,m), the desired encrypted aggregation. Finally, the aggre-
gator sends back share(agg) = ⌊b⌉p′ to the DOs.

3. Distributed decryption: Given Enc(sk = s,m) s.t. s =
∑

i si. This protocol is as follows:

(a) The i-th DO (∀i) computes share(i) = ⌊asi⌉p′ and makes it available to the other DOs.

(b) All DOs compute
⌊
share(agg) −

∑
i share

(i)
⌉
p
, which is equal to m with probability higher

than 1− 2−κ, whenever the encryption parameters are chosen according to Section 4.



Semantic Security: Given a pair of independent and uniformly random terms a, u ← Rq, then
if an algorithm A(a, ⌊u⌉p′ , ⌊asi⌉p′) can distinguish between (a, ⌊u⌉p′) and (a, ⌊asi⌉p′), A can be

used to distinguish with probability 1− 2−κ the RLWE sample (a, asi + e) from the pair (a, u).

From RLWE to M-LWE and LWE: As the a polynomials in the RLWE samples (a, b = as + e)
are generated under the CRS model with a PRFK(·), keys could be alternatively defined under
either M-LWE or LWE assumptions without adding extra communication/computation costs
for aggregation. On the one hand, we can work under the LWE assumption with the same
communication cost as its RLWE counterpart, and hence removing the quadratic communica-
tion/computation overhead of public-key LWE-based solutions. On the other hand, there is an
overhead for encryption and also an increase in the number of calls to PRFK(·) by a factor n.

4 Example instantiations and additional features

Communication costs: Table 2 includes the communication cost per party of the secure aggre-
gation protocol. We assume that the number of model parameters NModelParam is high enough.

Input per DO Decryption share per DO Aggregator output Decrypted result

NModelParam · log2 q NModelParam · log2 p′ NModelParam · log2 p′ NModelParam · log2 p

Table 2. Communication costs per party in each aggregation round.

Protocol parameters {p, p′, q, n}: If the event Ev represents the probability of having at least a
decryption failure during NAggRounds consecutive rounds, then by applying Lemma 1, we have:

Pr(Ev) ≤
2 · n ·NAggRounds ·NCtxts.PerRound · p′ ·BAgg

q
,

in which bounding by Pr(Ev) ≤ 2−κ with parameter κ, we have that q satisfies:

q ≥ 2 · n ·NAggRounds ·NCtxts.PerRound · p′ ·BAgg · 2κ. (2)

Finally, a last rounding step is applied after aggregating the shares, which requires
nBAggp

p′ < 1
2

whenever each si is bounded by BInit =
BAgg

L . This gives the following lower bound for q:

q ≥ 4 · n2 ·NAggRounds ·NCtxts.PerRound · p · L2 ·B2
Init · 2κ. (3)

Example of parameters for Federated Learning (FL): Table 3 includes two different sets of
protocol parameters based on the ones provided in [10] for training in an FL context. To fix
ideas in terms of performance costs, on the FEMNIST dataset [5, 4] with a 486,654 parameters
model and 1000 clients, we obtain (HE-domain) aggregation times of around 27 secs for an
overall time per learning round of around 10 mins (i.e., including the local training done on the
clients), hence a ≈ 5% overhead. This is following other studies [10] using parameters similar
to those in Table 3 in the single-key setting.

Parameter Par. set 1 Par. set 2

{n,NAggRounds, NParties} {16384, 256, 212} {16384, 220, 220}
{NModelParam, NCtxts.PerRound = ⌈NModelParam

n ⌉} {524288, 32} {524288, 32}
{p, p′, q} {32, 65, 242} bits {32, 73, 270} bits

{bit security, κ} {≈ 256, 128} {> 192, 128}
{Binit, Bfinal} {25, 217} {25, 225}

Table 3. Example parameter sets for FL [10] (Par. set 1, approx. to [10]) and (Par. set 2, bigger than [10]).

Session keys: It is easy to define session keys, as the si terms of si+ r(i) can be changed in each
aggregation round. Alternatively, other options are possible, e.g., by using si + u · r(i), where u
is a uniformly random element changed each round and generated by PRFK(·).



Flexible decryption structure: If a DO does not collaborate for decryption, the aggregator and
the rest of DOs are able to “fix” their encryptions with an extra communication round, enabling:
(1) to remove the model update of the missing party in the aggregation result, and (2) to decrypt
under a different subset of secret keys.

General Linear Combination of Model Parameter Updates: The aggregation can be generalized
to work for any linear combination of encrypted model updates. For this purpose, the generated
additive shares in Section 2 have to satisfy the zero equality for the desired linear combination.

5 Conclusions

This work presents a lightweight aggregation protocol for the federated learning under the
assumption of semi-honest parties, with less bandwidth requirements than existing protocols
and a more flexible setup. In the future, we intend to implement and test this secure aggregation
approach when deployed for a practical use case of Federated Learning (such as the one from
[7]). Moreover, we want to go beyond the assumption of honest-but-curious data owners by
extending the protocol with methods for verifiable encryption/decryption.

Acknowledgements

This work was partially funded by the European Union’s Horizon Europe Framework Pro-
gramme for Research and Innovation Action under project TRUMPET (proj. no. 101070038),
by the European Regional Development Fund (FEDER) and Xunta de Galicia under project
“Grupos de Referencia Competitiva” (ED431C 2021/47), by FEDER and MCIN/AEI under
project FELDSPAR (TED2021-130624B-C21).

This work was funded in part by the EU-funded ENCRYPT under the Horizon Europe
Framework Programme under grant agreement Nr. 101070670 as well as by Agence Nationale
de la Recherche (France) under grant Plan France 2030/ANR-22-PECY-0003 (SecureCompute).

The first author is currently a visiting researcher at CEA-List, Université Paris-Saclay, being
also funded by the European Union “NextGenerationEU/PRTR” by means of a Margarita Salas
grant of the Universidade de Vigo.

Funded by the European Union. Views and opinions expressed are however those of the
authors only and do not necessarily reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for them.

References

1. M. R. Albrecht, J. Faugère, R. Fitzpatrick, and L. Perret. Lazy modulus switching for the BKW algorithm
on LWE. In PKC 2014, volume 8383 of Lecture Notes in Computer Science, pages 429–445. Springer, 2014.

2. A. Aloufi, P. Hu, Y. Song, and K. E. Lauter. Computing blindfolded on data homomorphically encrypted
under multiple keys: A survey. ACM Comput. Surv., 54(9):195:1–195:37, 2022.

3. C. Baum, D. Escudero, A. Pedrouzo-Ulloa, P. Scholl, and J. R. Troncoso-Pastoriza. Efficient protocols for
oblivious linear function evaluation from ring-lwe. J. Comput. Secur., 30(1):39–78, 2022.

4. S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar. LEAF: A benchmark for
federated settings. CoRR, abs/1812.01097, 2018.

5. G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. EMNIST: extending MNIST to handwritten letters. In
IJCNN 2017, pages 2921–2926. IEEE, 2017.

6. Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data mining. Cryptology
ePrint Archive, Paper 2008/197, 2008. https://eprint.iacr.org/2008/197.

7. A. Madi, O. Stan, A. Mayoue, A. Grivet-Sébert, C. Gouy-Pailler, and R. Sirdey. A secure federated learning
framework using homomorphic encryption and verifiable computing. pages 1–8, 2021.

8. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning
of deep networks from decentralized data. 2017.

9. C. Mouchet, J. R. Troncoso-Pastoriza, J. Bossuat, and J. Hubaux. Multiparty homomorphic encryption from
ring-learning-with-errors. Proc. Priv. Enhancing Technol., 2021(4):291–311, 2021.

10. A. G. Sébert, R. Sirdey, O. Stan, and C. Gouy-Pailler. Protecting data from all parties: Combining FHE
and DP in federated learning. CoRR, abs/2205.04330, 2022.


