384 research outputs found

    Observation- and Model-Based Estimates of Particulate Dry Nitrogen Deposition to the Oceans

    Get PDF
    © Author(s) 2017. This is an Open Access article distributed under the Creative Commons Attribution License CC BY 3.0 ( https://creativecommons.org/licenses/by/3.0/ ). Published by Copernicus Publications on behalf of the European Geosciences Union.Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3−) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4): ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3− and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model–observation ratios (RA, n), weighted by grid-cell area and number of observations, were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 overestimates NO3− concentrations (RA, n =  1.4–2.9) and underestimates NH4+ concentrations (RA, n =  0.5–0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA, n =  0.6–2.6 for NO3−, 0.6–3.1 for NH4+). Values of RA, n for NHx CalDep–ModDep comparisons were approximately double the corresponding values for NH4+ CalDep–ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model–observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species' concentrations, and this cannot be achieved if model products only report dry deposition flux over the ocean.Peer reviewedFinal Published versio

    Robert Nozick on nonhuman animals : rights, value and the meaning of life

    Get PDF
    In his chapter, Josh Milburn argues that Robert Nozick considers nonhuman animals in his philosophical writings, but that these discussions are downplayed in animal ethics and Nozick scholarship. This is regrettable, Milburn proposes, as Nozick is far more sympathetic to animal rights than many other libertarians. Milburn thus offers an analysis of Nozick’s animal ethics. Nozick’s arguments concerning vegetarianism and speciesism are considered, and Milburn argues that tensions in Nozick’s political philosophy potentially open the door to animal rights. Whatever their place in his political philosophy, Milburn contends, nonhuman animals find a comfortable home in Nozick’s axiology and ethics, with their value and the significance of our duties towards them affirmed. Milburn concludes that animal ethicists could learn from Nozick’s distinctive arguments and approaches and find an unexpected ally

    Court Cases, Cultural Expertise and ´Female Genital Mutilation' in Europe

    Get PDF
    This chapter discusses adjudication, expertise, and cultural difference as it appears in criminal court cases concerning female genital cutting (FGM) in the EU, as reported in a 2015 comparative overview. It begins with the distinction between typical and atypical FGM cases; a distinction that connects court cases to the cultural realities of the practicing communities, suggesting that the lack of cultural knowledge can cause unnecessary suffering to families and/or individuals who wrongly undergo prosecution in alleged FGM cases. A contrario, the intervention of experts in FGM court cases could be a positive approach to assessing the legitimacy of public intervention in certain cases

    Connectivity: insights from the U.S. Long Term Ecological Research Network

    Get PDF
    Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land-use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long-term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long-term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies

    Obesity-related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention

    Get PDF
    Objective: Weight reduction improves several obesity-related health conditions. We aimed to compare the effect of bariatric surgery and comprehensive lifestyle intervention on type 2 diabetes and obesityrelated cardiovascular risk factors. Design: One-year controlled clinical trial (ClinicalTrials.gov identifier NCT00273104). Methods: Morbidly obese subjects (19–66 years, mean (S.D.) body mass index 45.1 kg/m2 (5.6), 103 women) were treated with either Roux-en-Y gastric bypass surgery (nZ80) or intensive lifestyle intervention at a rehabilitation centre (nZ66). The dropout rate within both groups was 5%. Results: Among the 76 completers in the surgery group and the 63 completers in the lifestyle group, mean (S.D.) 1-year weight loss was 30% (8) and 8% (9) respectively. Beneficial effects on glucose metabolism, blood pressure, lipids and low-grade inflammation were observed in both groups. Remission rates of type 2 diabetes and hypertension were significantly higher in the surgery group than the lifestyle intervention group; 70 vs 33%, PZ0.027, and 49 vs 23%, PZ0.016. The improvements in glycaemic control and blood pressure were mediated by weight reduction. The surgery group experienced a significantly greater reduction in the prevalence of metabolic syndrome, albuminuria and electrocardiographic left ventricular hypertrophy than the lifestyle group. Gastrointestinal symptoms and symptomatic postprandial hypoglycaemia developed more frequently after gastric bypass surgery than after lifestyle intervention. There were no deaths. Conclusions: Type 2 diabetes and obesity-related cardiovascular risk factors were improved after both treatment strategies. However, the improvements were greatest in those patients treated with gastric bypass surgery

    A re-evaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean

    Get PDF
    We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition, and compare this to fluvial inputs and di-nitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological di-nitrogen fixation is the main external source of nitrogen to the open ocean, i.e. beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr-1 and less than the Duce et al., 2008 estimate). The resulting reduction in climate change forcing from this ocean CO2 uptake is offset to a small extent by an increase in ocean N2O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs

    Coffee, Alcohol, Smoking, Physical Activity and QT Interval Duration: Results from the Third National Health and Nutrition Examination Survey

    Get PDF
    Abnormalities in the electrocardiographic QT interval duration have been associated with an increased risk of ventricular arrhythmias and sudden cardiac death. However, there is substantial uncertainty about the effect of modifiable factors such as coffee intake, cigarette smoking, alcohol consumption, and physical activity on QT interval duration.We studied 7795 men and women from the Third National Health and Nutrition Survey (NHANES III, 1988-1994). Baseline QT interval was measured from the standard 12-lead electrocardiogram. Coffee and tea intake, alcohol consumption, leisure-time physical activities over the past month, and lifetime smoking habits were determined using validated questionnaires during the home interview.In the fully adjusted model, the average differences in QT interval comparing participants drinking ≥6 cups/day to those who did not drink any were -1.2 ms (95% CI -4.4 to 2.0) for coffee, and -2.0 ms (-11.2 to 7.3) for tea, respectively. The average differences in QT interval duration comparing current to never smokers was 1.2 ms (-0.6 to 2.9) while the average difference in QT interval duration comparing participants drinking ≥7 drinks/week to non-drinkers was 1.8 ms (-0.5 to 4.0). The age, race/ethnicity, and RR-interval adjusted differences in average QT interval duration comparing men with binge drinking episodes to non-drinkers or drinkers without binge drinking were 2.8 ms (0.4 to 5.3) and 4.0 ms (1.6 to 6.4), respectively. The corresponding differences in women were 1.1 (-2.9 to 5.2) and 1.7 ms (-2.3 to 5.7). Finally, the average differences in QT interval comparing the highest vs. the lowest categories of total physical activity was -0.8 ms (-3.0 to 1.4).Binge drinking was associated with longer QT interval in men but not in women. QT interval duration was not associated with other modifiable factors including coffee and tea intake, smoking, and physical activity
    corecore