34 research outputs found

    Connectome Specific Harmonic Wave Analysis of Disordered Brain States

    Get PDF
    Background: Connectome Harmonics analysis is a novel neuroimaging framework that defines brain states as neural spatial patterns associated with different frequencies emerging within a brain. Frequencies corresponding to specific brain states, or connectome-specific harmonic waves (CSHWs), are estimated to be the building blocks of brain activity, linking cortical oscillations, functional connectivity, and structural connectivity. Using this framework, studies will examine CSHWs of patients to catalog and analyze the spatiotemporal neural dynamics of patients with disordered brain states. Methods: By using MRI (or fMRI) and DTI data extracted from MRI scans of patients, cortical surface anatomy and the underlying neural tracts can be tracked respectively and combined to generate a patient’s connectome. Once the connectome is generated, it is converted into its graphical form where Eigen decompositions of the Laplacian operator are graphed. Application of this function to the connectome’s graph results in a spectrum of harmonic brain modes corresponding to a patient’s brain’s natural resonant frequencies (eigenvalues). Results: The CSHW framework has already been used to examine brains in a variety of ways. Previous research findings show that neocortical organization and development may be shaped by the harmonic modes corresponding to the brain’s functional connectivity, Patients given classical psychedelics (LSD, Psilocybin, and DMT) display an expanded repertoire of brain states, and neuroplasticity may be underpinned by neurons shifting into metastable states that are modulated according to a brain’s CSHWs. Discussion: Common neuroimaging methods like CT scans and PET scans are important in extracting information about regional activation during tasks but fail to contextualize or explain the interconnectedness of brain activity. CSHW analysis utilizes multiple imaging techniques and mathematical functions to derive an alphabet of brain states that can be used to describe our subjective states, from mental disorders to flow states and everyday emotions. Clinical trials here at the UTRGV institute of neuroscience will apply CSHW analysis to patients suffering from bipolar disorder, depression, and alcohol withdrawal syndrome. This research will not only allow us to examine and catalog the spatiotemporal dynamics of these disorders but potentially map out treatment plans tailored to each patient’s connectome harmonics

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    Defining the critical hurdles in cancer immunotherapy

    Get PDF
    Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types.

    Get PDF
    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.The Breast Cancer Association Consortium (BCAC), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL), and the Ovarian Cancer Association Consortium (OCAC) that contributed breast, prostate, and ovarian cancer data analyzed in this study were in part funded by Cancer Research UK [C1287/A10118 and C1287/A12014 for BCAC; C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, and C16913/A6135 for PRACTICAL; and C490/A6187, C490/A10119, C490/A10124, C536/A13086, and C536/A6689 for OCAC]. Funding for the Collaborative Oncological Gene-environment Study (COGS) infrastructure came from: the European Community's Seventh Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, and C8197/A16565), the US National Institutes of Health (CA128978) and the Post-Cancer GWAS Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative (1U19 CA148537, 1U19 CA148065, and 1U19 CA148112), the US Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund [with donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07)]. Additional financial support for contributing studies is documented under Supplementary Financial Support.This is the author accepted manuscript. The final version is available from the American Association for Cancer Research via http://dx.doi.org/10.1158/2159-8290.CD-15-122

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (PPeer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore