104 research outputs found

    A four gene signature of chromosome instability (CIN4) predicts for benefit from taxanes in the NCIC-CTG MA21 clinical trial.

    Get PDF
    Recent evidence demonstrated CIN4 as a predictive marker of anthracycline benefit in early breast cancer. An analysis of the NCIC CTG MA.21 clinical trial was performed to test the role of existing CIN gene expression signatures as prognostic and predictive markers in the context of taxane based chemotherapy.RNA was extracted from patients in cyclophosphamide, epirubicin and flurouracil (CEF) and epirubicin, cyclophosphamide and paclitaxel (EC/T) arms of the NCIC CTG MA.21 trial and analysed using NanoString technology.After multivariate analysis both high CIN25 and CIN70 score was significantly associated with an increased in RFS (HR 1.76, 95%CI 1.07-2.86, p=0.0018 and HR 1.59, 95%CI 1.12-2.25, p=0.0096 respectively). Patients whose tumours had low CIN4 gene expression scores were associated with an increase in RFS (HR: 0.64, 95% CI 0.39-1.03, p=0.06) when treated with EC/T compared to patients treated with CEF.In conclusion we have demonstrated CIN25 and CIN70 as prognostic markers in breast cancer and that CIN4 is a potential predictive maker of benefit from taxane treatment

    Crystal Structures Reveal the Multi-Ligand Binding Mechanism of Staphylococcus aureus ClfB

    Get PDF
    Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties

    Pre-Procedural Atorvastatin Mobilizes Endothelial Progenitor Cells: Clues to the Salutary Effects of Statins on Healing of Stented Human Arteries

    Get PDF
    OBJECTIVES: Recent clinical trials suggest an LDL-independent superiority of intensive statin therapy in reducing target vessel revascularization and peri-procedural myocardial infarctions in patients who undergo percutaneous coronary interventions (PCI). While animal studies demonstrate that statins mobilize endothelial progenitor cells (EPCs) which can enhance arterial repair and attenuate neointimal formation, the precise explanation for the clinical PCI benefits of high dose statin therapy remain elusive. Thus we serially assessed patients undergoing PCI to test the hypothesis that high dose Atorvastatin therapy initiated prior to PCI mobilizes EPCs that may be capable of enhancing arterial repair. METHODS AND RESULTS: Statin naïve male patients undergoing angiography for stent placement were randomized to standard therapy without Atorvastatin (n = 10) or treatment with Atorvastatin 80 mg (n = 10) beginning three days prior to stent implantation. EPCs were defined by flow cytometry (e.g., surface marker profile of CD45dim/34+/133+/117+). As well, we also enumerated cultured angiogenic cells (CACs) by standard in vitro culture assay. While EPC levels did not fluctuate over time for the patients free of Atorvastatin, there was a 3.5-fold increase in EPC levels with high dose Atorvastatin beginning within 3 days of the first dose (and immediately pre-PCI) which persisted at 4 and 24 hours post-PCI (p<0.05). There was a similar rise in CAC levels as assessed by in vitro culture. CACs cultured in the presence of Atorvastatin failed to show augmented survival or VEGF secretion but displayed a 2-fold increase in adhesion to stent struts (p<0.05). CONCLUSIONS: High dose Atorvastatin therapy pre-PCI improves EPC number and CAC number and function in humans which may in part explain the benefit in clinical outcomes seen in patients undergoing coronary interventions

    Staphylococcus aureus Protein A Binds to Osteoblasts and Triggers Signals That Weaken Bone in Osteomyelitis

    Get PDF
    Osteomyelitis is a debilitating infectious disease of the bone. It is predominantly caused by S. aureus and is associated with significant morbidity and mortality. It is characterised by weakened bones associated with progressive bone loss. Currently the mechanism through which either bone loss or bone destruction occurs in osteomyelitis patients is poorly understood. We describe here for the first time that the major virulence factor of S. aureus, protein A (SpA) binds directly to osteoblasts. This interaction prevents proliferation, induces apoptosis and inhibits mineralisation of cultured osteoblasts. Infected osteoblasts also increase the expression of RANKL, a key protein involved in initiating bone resorption. None of these effects was seen in a mutant of S. aureus lacking SpA. Complementing the SpA-defective mutant with a plasmid expressing spa or using purified protein A resulted in attachment to osteoblasts, inhibited proliferation and induced apoptosis to a similar extent as wildtype S. aureus. These events demonstrate mechanisms through which loss of bone formation and bone weakening may occur in osteomyelitis patients. This new information may pave the way for the development of new and improved therapeutic agents to treat this disease

    A Structural Model of the Staphylococcus aureus ClfA–Fibrinogen Interaction Opens New Avenues for the Design of Anti-Staphylococcal Therapeutics

    Get PDF
    The fibrinogen (Fg) binding MSCRAMM Clumping factor A (ClfA) from Staphylococcus aureus interacts with the C-terminal region of the fibrinogen (Fg) γ-chain. ClfA is the major virulence factor responsible for the observed clumping of S. aureus in blood plasma and has been implicated as a virulence factor in a mouse model of septic arthritis and in rabbit and rat models of infective endocarditis. We report here a high-resolution crystal structure of the ClfA ligand binding segment in complex with a synthetic peptide mimicking the binding site in Fg. The residues in Fg required for binding to ClfA are identified from this structure and from complementing biochemical studies. Furthermore, the platelet integrin αIIbβ3 and ClfA bind to the same segment in the Fg γ-chain but the two cellular binding proteins recognize different residues in the common targeted Fg segment. Based on these differences, we have identified peptides that selectively antagonize the ClfA-Fg interaction. The ClfA-Fg binding mechanism is a variant of the “Dock, Lock and Latch” mechanism previously described for the Staphylococcus epidermidis SdrG–Fg interaction. The structural insights gained from analyzing the ClfANFg peptide complex and identifications of peptides that selectively recognize ClfA but not αIIbβ3 may allow the design of novel anti-staphylococcal agents. Our results also suggest that different MSCRAMMs with similar structural organization may have originated from a common ancestor but have evolved to accommodate specific ligand structures

    The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence

    Get PDF
    The environment that the oocyte is exposed to during the peri-conception period can have a significant impact on oocyte developmental competence (the ability of the oocyte to support fertilisation and subsequent embryo development) and the long-term health of the resulting offspring. This is particularly true for maternal hyperglycaemia. While maternal hyperglycaemia during early pregnancy through term development has been extensively studied, the effects on the oocyte itself, and the underlying mechanisms, remain largely unknown. There is increasing evidence, however, for the role of the fuel-sensing hexosamine biosynthesis pathway in mediating the effects of hyperglycaemia in many different cell types. In this review, we will focus on the reproductive consequences of maternal hyperglycaemia during the peri-conceptual period and the role of the hexosamine pathway in mediating these processes.Laura A. Frank, Melanie L. Sutton-McDowall, Robert B. Gilchrist, and Jeremy G. Thompso

    Contribution of Exogenous Genetic Elements to the Group A Streptococcus Metagenome

    Get PDF
    Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is ∼1.9 Mb in size, with ∼10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics

    3D bioactive composite scaffolds for bone tissue engineering

    Get PDF
    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed
    corecore