530 research outputs found

    PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPARG) regulates cellular functions such as adipogenesis and immune cell activation. However, new information has indicated additional roles of PPARG directing the cyclic changes that occur within ovarian tissue of female mammals, including those that facilitate the release of oocytes each estrous cycle. In addition to ovarian PPARG expression and function, many PPARG actions within adipocytes and macrophages have additional direct and indirect implications for ovarian function and female fertility. This encompasses the regulation of lipid uptake and transport, insulin sensitivity, glucose metabolism, and the regulation of inflammatory mediator synthesis and release. This review discusses the developing links between PPARG activity and female reproductive function, and highlights several mechanisms that may facilitate such a relationship

    Maternal and paternal sugar consumption interact to modify offspring life history and physiology

    Get PDF
    First published: 09 March 20221. Intergenerational effects on offspring phenotypes occur in response to variation in both maternal and paternal nutrition. Because the combined maternal and paternal effects are rarely considered together, however, their relative contributions, and the capacity for interactions between parental diets to shape offspring life history and physiology are not understood. 2. To address this, we altered the sucrose levels of adult fruit flies (Drosophila melanogaster) prior to mating, across two generations, producing parent–parent and parent–offspring combinations that were either matched or mismatched in dietary sucrose. We then measured life span, fecundity, body mass and triglyceride levels in parents and offspring. 3. We reveal complex, non-cumulative interactions, which involve diets of each parent and offspring, shape offspring phenotypes, but the effects were generally not consistent with an adaptive response to parental diet. 4. Notably, we find that interacting parental flies (sires and dams) lived longer when their sucrose treatments were matched, but they produced shorter lived offspring. 5. These results are suggestive of intergenerational conflict over optimal diets, and call for further research into the capacity, and mechanisms, for mismatches in parental environments to enhance offspring phenotype generally. 6. Our study also indicates that studies of maternal and paternal effects will need embrace experimental designs with power to test for interactions between maternal and paternal environments if they are to fully understand the ecological and evolutionary significance of parental effects on offspring fitness.Tara-Lyn Camilleri, Matthew D. W. Piper, Rebecca L. Robker, Damian K. Dowlin

    Progestin and Nuclear Progestin Receptor Are Essential for Upregulation of Metalloproteinase in Zebrafish Preovulatory Follicles

    Get PDF
    Ovulation requires proteinases to promote the rupture of ovarian follicles. However, the identity of these proteinases remains unclear. In our previous studies using RNA-seq analysis of differential expressed genes, we found significant down-regulation of five metalloproteinases: adam8b (a disintegrin and metalloproteinase domain 8b), adamts8a (a disintegrin and metalloproteinase with thrombospondin motif 8a), adamts9, mmp2 (matrix metalloproteinase 2), and mmp9 in the nuclear progestin receptor knockout (pgrÒˆ’/Òˆ’) zebrafish that have failed to ovulate. We hypothesize that these metalloproteinases are responsible for ovulation and are regulated by progestin and Pgr. In this study, we first determined the expression of these five metalloproteinases and adamts1 in preovulatory follicles at different times within the spawning cycle in pgrÒˆ’/Òˆ’ and wildtype (wt) zebrafish and under varying hormonal treatments. We found that transcripts of adam8b, adamts1, adamts9, and mmp9 increased drastically in the preovulatory follicular cells of wt female zebrafish, while changes of adamts8a and mmp2 were not significant. This increase of adam8b, adamts9, and mmp9 was significantly reduced in pgrÒˆ’/Òˆ’, whereas expression of adamts1 was not affected in pgrÒˆ’/Òˆ’ zebrafish. Among upregulated metalloproteinases, adamts9 mRNA was found to be expressed specifically in follicular cells. Strong immunostaining of Adamts9 protein was observed in the follicular cells of wt fish, and this expression was reduced drastically in pgrÒˆ’/Òˆ’. Interestingly, about an hour prior to the increase of metalloproteinases in wt fish, both Pgr transcript and protein increased transiently in preovulatory follicular cells. The results from in vitro experiments showed that adamts9 expression markedly increased in a dose, time and Pgr-dependent manner when preovulatory follicles were exposed to a progestin, 17α,20β-dihydroxy-4-pregnen-3-one (DHP). Taken together, our results provide the first evidence that upregulation of adamts9 occurs specifically in preovulatory follicular cells of zebrafish prior to ovulation. Progestin and its receptor (Pgr) are essential for the upregulation of metalloproteinases

    Expression and localisation of c-kit and KITL in the adult human ovary

    Get PDF
    The c-kit/kit ligand (KITL) signalling axis is an essential component of ovarian folliculogenesis in mammals, but little is known about expression and localisation of its key components in the ovaries of reproductive age women. This study aimed to characterise mRNA expression of c-kit and KITL isoforms and the localisation of c-kit and KITL proteins in adult human premenopausal ovaries.This study utilised granulosa cells obtained from the preovulatory follicles of women undergoing assisted reproduction, pieces of ovarian tissue obtained from premenopausal women undergoing gynaecological surgeries and archival paraffin-embedded premenopausal ovarian tissues. Methodology included PCR for gene expression and Western blot or immunohistochemistry for protein expression.Both c-kit mRNA isoforms, known as GNNK+ and GNNK-, were detected in human ovarian cortex, while KITL protein isoforms (KITL1 and KITL2) were present in ovarian cortex and human granulosa cells. Immunohistochemistry showed expression of KITL and c-kit protein in multiple cell types within follicles throughout development, from primordial follicles to large antral follicles, in addition to atretic follicles. Oocytes of all follicle stages expressed c-kit protein exclusively. Interestingly, unlike animal models, expression of both proteins displayed a less cell-type specific distribution with immunostaining present in granulosa, theca and stromal cells, suggesting that autocrine signalling occurs within the human ovary.The results of this study indicate that c-kit/KITL signalling also occurs in the human ovary, as established in various animal models, and may involve previously unknown autocrine signalling.Astrud R Tuck, Rebecca L Robker, Robert J Norman, Wayne D Tilley and Theresa E Hicke

    Hyperglycaemia and lipid differentially impair mouse oocyte developmental competence

    Get PDF
    Maternal diabetes and obesity are characterised by elevated blood glucose, insulin and lipids, resulting in upregulation of specific fuel-sensing and stress signalling pathways. Previously, we demonstrated that, separately, upregulation of the hexosamine biosynthetic pathway (HBP; under hyperglycaemic conditions) and endoplasmic reticulum (ER) stress (due to hyperlipidaemia) pathways reduce blastocyst development and alter oocyte metabolism. In order to begin to understand how both glucose and lipid metabolic disruptions influence oocyte developmental competence, in the present study we exposed mouse cumulus–oocyte complexes to hyperglycaemia (30 mM) and/or lipid (40 ΞΌM) and examined the effects on embryo development. The presence of glucosamine (GlcN; a hyperglycaemic mimetic) or increased lipid during in vitro maturation severely perturbed blastocyst development (P < 0.05). Hyperglycaemia, GlcN and hyperglycaemia + lipid treatments significantly increased HBP activity, increasing total O-linked glycosylation (O-GlcNAcylation) of proteins (P < 0.0001). All treatments also induced ER stress pathways, indicated by the expression of specific ER stress genes. The expression of genes encoding the HBP enzymes glutamine:fructose-6-phosphate amidotransferase 2 (Gfpt2) and O-linked Ξ²-N-acetylglucosaminyltransferase (Ogt) was repressed following lipid treatment (P < 0.001). These findings partially implicate the mechanism of O-GlcNAcylation and ER stress as likely contributors to compromised fertility of obese women.Siew L. Wong, Linda L. Wu, Rebecca L. Robker, Jeremy G. Thompson and Melanie L. Sutton McDowal

    A study relating the composition of follicular fluid and blood plasma from individual Holstein dairy cows to the in vitro developmental competence of pooled abattoir-derived oocytes

    Get PDF
    The fertility of high performance (high milk yield) dairy breeds such as the Holstein within the Australian dairy herd has been on the decline for the past two decades. The 12-month calving interval for pasture-based farming practises results in oocyte maturation coinciding with peak lactation, periods of negative energy balance and energy partitioning for lactation, causing energy deficiency in some organ systems, including the reproductive system. Oocyte developmental competence (the ability to undergo successful fertilisation, embryo development and establishment of pregnancy) is intrinsically linked with the composition of follicular fluid (FF). The aim of this study was to determine if there was a relationship between the fat and carbohydrate levels in plasma and FF and the ability to support in vitro oocyte maturation (IVM). Plasma and FF were collected in vivo from eight Holstein cows between 52-151 days post-partum. Plasma glucose trended (P = 0.072) higher and triglyceride levels were significantly higher than in FF (P < 0.05) but there were no relationships between FF and plasma composition. Glucose FF concentration was negatively related to follicular lactate and NEFA levels and days post-partum. Conversely, FF triglyceride concentrations were positively related to FF NEFA levels and negatively related to milk fat and protein composition. Abattoir-derived cumulus oocyte complexes (COCs) were cultured in either 50% FF (FF-IVM) or 50% plasma (plasma-IVM), with on time embryo development then assessed. While there were no differences between animals, blastocyst rates following FF-IVM were negatively related to plasma glucose and days post-partum and positively related to body condition score (BCS) and plasma NEFA levels. In comparison to previous studies, total NEFA levels in FF were not related to animal parameters and did not influence oocyte developmental competence in vitro. Results from this study suggest that days post-partum and BCS influence carbohydrate metabolism within the follicular environment and this may be attributed to the pasture-based feed system applied in the Australian dairy industry.Melanie L Sutton-McDowall, Robert Yelland, Keith L MacMillan, Rebecca L Robker & Jeremy G Thompso

    Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists

    Get PDF
    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation during in vitro maturation and resulted in poor embryo development points to the developmental importance of fatty acid oxidation and the need for it to be optimized during in vitro maturation to improve this reproductive technology.Kylie R. Dunning, Marie R. Anastasi, Voueleng J. Zhang, Darryl L. Russell, Rebecca L. Robke

    Nuclear Progestin Receptor (Pgr) Knockouts in Zebrafish Demonstrate Role for Pgr in Ovulation but Not in Rapid Non-Genomic Steroid Mediated Meiosis Resumption

    Get PDF
    Progestins, progesterone derivatives, are the most critical signaling steroid for initiating final oocyte maturation (FOM) and ovulation, in order to advance fully-grown immature oocytes to become fertilizable eggs in basal vertebrates. It is well-established that progestin induces FOM at least partly through a membrane receptor and a non-genomic steroid signaling process, which precedes progestin triggered ovulation that is mediated through a nuclear progestin receptor (Pgr) and genomic signaling pathway. To determine whether Pgr plays a role in a non-genomic signaling mechanism during FOM, we knocked out Pgr in zebrafish using transcription activator-like effector nucleases (TALENs) and studied the oocyte maturation phenotypes of Pgr knockouts (Pgr-KOs). Three TALENs-induced mutant lines with different frame shift mutations were generated. Homozygous Pgr-KO female fish were all infertile while no fertility effects were evident in homozygous Pgr-KO males. Oocytes developed and underwent FOM normally in vivo in homozygous Pgr-KO female compared to the wild-type controls, but these mature oocytes were trapped within the follicular cells and failed to ovulate from the ovaries. These oocytes also underwent normal germinal vesicle breakdown (GVBD) and FOM in vitro, but failed to ovulate even after treatment with human chronic gonadotropin (HCG) or progestin (17α,20β-dihydroxyprogesterone or DHP), which typically induce FOM and ovulation in wild-type oocytes. The results indicate that anovulation and infertility in homozygous Pgr-KO female fish was, at least in part, due to a lack of functional Pgr-mediated genomic progestin signaling in the follicular cells adjacent to the oocytes. Our study of Pgr-KO supports previous results that demonstrate a role for Pgr in steroid-dependent genomic signaling pathways leading to ovulation, and the first convincing evidence that Pgr is not essential for initiating non-genomic progestin signaling and triggering of meiosis resumption

    Control of oocyte release by progesterone receptor-regulated gene expression

    Get PDF
    The progesterone receptor (PGR) is a nuclear receptor transcription factor that is essential for female fertility, in part due to its control of oocyte release from the ovary, or ovulation. In all mammals studied to date, ovarian expression of PGR is restricted primarily to granulosa cells of follicles destined to ovulate. Granulosa cell expression of PGR is induced by the pituitary Luteinizing Hormone (LH) surge via mechanisms that are not entirely understood, but which involve activation of Protein Kinase A and modification of Sp1/Sp3 transcription factors on the PGR promoter. Null mutations for PGR or treatment with PGR antagonists block ovulation in all species analyzed, including humans. The cellular mechanisms by which PGR regulates ovulation are currently under investigation, with several downstream pathways having been identified as PGR-regulated and potentially involved in follicular rupture. Interestingly, none of these PGR-regulated genes has been demonstrated to be a direct transcriptional target of PGR. Rather, in ovarian granulosa cells, PGR may act as an inducible coregulator for constitutively bound Sp1/Sp3 transcription factors, which are key regulators for a discrete cohort of ovulatory genes

    Offspring physiology following the use of IVM, IVF and ICSI: a systematic review and meta-analysis of animal studies

    Get PDF
    OnlinePublBackground: Since the birth of the first baby using IVF technology in 1978, over 10 million children have been conceived via ART. Although most aspects of ARTs were developed in animal models, the introduction of these technologies into clinical practice was performed without comprehensive assessment of their long-term safety. The monitoring of these technologies over time has revealed differences in the physiology of babies produced using ARTs, yet due to the pathology of those presenting for treatment, it is challenging to separate the cause of infertility from the effect of treatments offered. The use of systematic review and meta-analysis to investigate the impacts of the predominant ART interventions used clinically in human populations on animals produced in healthy fertile populations offers an alternative approach to understanding the long-term safety of reproductive technologies. Objective and Rationale: This systematic review and meta-analysis aimed to examine the evidence available from animal studies on physiological outcomes in the offspring conceived after IVF, IVM or ICSI, compared to in vivo fertilization, and to provide an overview on the landscape of research in this area. Search Methods: PubMed, Embase and Commonwealth Agricultural Bureaux (CAB) Abstracts were searched for relevant studies published until 27 August 2021. Search terms relating to assisted reproductive technology, postnatal outcomes and mammalian animal models were used. Studies that compared postnatal outcomes between in vitro-conceived (IVF, ICSI or IVM) and in vivo-conceived mammalian animal models were included. In vivo conception included mating, artificial insemination, or either of these followed by embryo transfer to a recipient animal with or without in vitro culture. Outcomes included birth weight, gestation length, cardiovascular, metabolic and behavioural characteristics and lifespan. Outcomes: A total of 61 studies in five different species (bovine, equine, murine, ovine and non-human primate) met the inclusion criteria. The bovine model was the most frequently used in IVM studies (32/40), while the murine model was mostly used in IVF (17/20) and ICSI (6/8) investigations. Despite considerable heterogeneity, these studies suggest that the use of IVF or maturation results in offspring with higher birthweights and a longer length of gestation, with most of this evidence coming from studies in cattle. These techniques may also impair glucose and lipid metabolism in male mice. The findings on cardiovascular outcomes and behaviour outcomes were inconsistent across studies. Wider Implications: Conception via in vitro or in vivo means appears to have an influence on measurable outcomes of offspring physiology, manifesting differently across the species studied. Importantly, it can be noted that these measurable differences are noticeable in healthy, fertile animal populations. Thus, common ART interventions may have long-term consequences for those conceived through these techniques, regardless of the pathology underpinning diagnosed infertility. However, due to heterogeneous methods, results and measured outcomes, highlighted in this review, it is difficult to draw firm conclusions. Optimizing animal and human studies that investigate the safety of new reproductive technologies will provide insight into safeguarding the introduction of novel interventions into the clinical setting. Cautiously prescribing the use of ARTs clinically may also be considered to reduce the chance of promoting adverse outcomes in children conceived before long-term safety is confidently documented.Kiri H. Beilby, Ezra Kneebone, Tessa J. Roseboom, Indah M. van Marrewijk, Jeremy G. Thompson, Robert J. Norman, Rebecca L. Robker, Ben Willem J. Mol, and Rui Wan
    • …
    corecore