204 research outputs found

    Eosinophilic Esophagitis beyond Eosinophils - an Emerging Phenomenon Overlapping with Eosinophilic Esophagitis: Collegium Internationale Allergologicum (CIA) Update 2023.

    Get PDF
    Having long been considered the mainstay in eosinophilic esophagitis (EoE) diagnosis and pathogenesis, the role of eosinophils has been questioned and might be less important than previously thought. It is well known now that EoE is a Th2-mediated disease with many more disease features than eosinophilic infiltration. With more knowledge on EoE, less pronounced phenotypes or nuances of the disease have become apparent. In fact, EoE might be only the tip of the iceberg (and the most extreme phenotype) with several variant forms, at least three, lying on a disease spectrum. Although a common (food induced) pathogenesis has yet to be confirmed, gastroenterologists and allergologists should be aware of these new phenomena in order to further characterize these patients. In the following review, we discuss the pathogenesis of EoE, particularly those mechanisms beyond eosinophilic infiltration of the esophageal mucosa, non-eosinophilic inflammatory cell populations, the new disease entity EoE-like disease, variant forms of EoE, and the recently coined term mast cell esophagitis

    Multipole Expansion for Relativistic Coulomb Excitation

    Get PDF
    We derive a general expression for the multipole expansion of the electro-magnetic interaction in relativistic heavy-ion collisions, which can be employed in higher-order dynamical calculations of Coulomb excitation. The interaction has diagonal as well as off-diagonal multipole components, associated with the intrinsic and relative coordinates of projectile and target. A simple truncation in the off-diagonal components gives excellent results in first-order perturbation theory for distant collisions and for beam energies up to 200 MeV/nucleon.Comment: 3 figures, Accepted for publication in Phys. Rev.

    Plasma Lipases And Lipid Transfer Proteins Increase Phospholipid But Not Free Cholesterol Transfer From Lipid Emulsion To High Density Lipoproteins

    Get PDF
    Background: Plasma lipases and lipid transfer proteins are involved in the generation and speciation of high density lipoproteins. In this study we have examined the influence of plasma lipases and lipid transfer protein activities on the transfer of free cholesterol (FC) and phospholipids (PL) from lipid emulsion to human, rat and mouse lipoproteins. The effect of the lipases was verified by incubation of labeled (3H-FC, 14C-PL) triglyceride rich emulsion with human plasma (control, post-heparin and post-heparin plus lipase inhibitor), rat plasma (control and post-heparin) and by the injection of the labeled lipid emulsion into control and heparinized functionally hepatectomized rats. Results: In vitro, the lipase enriched plasma stimulated significantly the transfer of 14C-PL from emulsion to high density lipoprotein (p<0.001) but did not modify the transfer of 3H-FC. In hepatectomized rats, heparin stimulation of intravascular lipolysis increased the plasma removal of 14C-PL and the amount of 14C-PL found in the low density lipoprotein density fraction but not in the high density lipoprotein density fraction. The in vitro and in vivo experiments showed that free cholesterol and phospholipids were transferred from lipid emulsion to plasma lipoproteins independently from each other. The incubation of human plasma, control and control plus monoclonal antibody anti-cholesteryl ester transfer protein (CETP), with 14C-PL emulsion showed that CETP increases 14C-PL transfer to human HDL, since its partial inhibition by the anti-CETP antibody reduced significantly the 14C-PL transfer (p<0.05). However, comparing the nontransgenic (no CETP activity) with the CETP transgenic mouse plasma, no effect of CETP on the 14C-PL distribution in mice lipoproteins was observed. Conclusions: It is concluded that: 1-intravascular lipases stimulate phospholipid transfer protein mediated phospholipid transfer, but not free cholesterol, from triglyceride rich particles to human high density lipoproteins and rat low density lipoproteins and high density lipoproteins; 2-free cholesterol and phospholipids are transferred from triglyceride rich particles to plasma lipoproteins by distinct mechanisms, and 3 - CETP also contributes to phospholipid transfer activity in human plasma but not in transgenic mice plasma, a species which has high levels of the specific phospholipid transfer protein activity.219Backer, G., Bacquer, D., Konitzer, M., Epidemiological aspects of high density lipoprotein cholesterol (1998) Atherosclerosis, 137, pp. S1-S6Stein, O., Stein, Y., Atheroprotective mechanisms of HDL (1999) Atherosclerosis, 144, pp. 285-301Tall, A.R., Plasma lipid transfer proteins (1995) Annu Rev Biochem, 64, pp. 235-257Hesler, B., Tall, A.R., Swenson, T.L., Weech, P.K., Marcel, Y.L., Milne, R.W., Monoclonal antibody to the Mr 74000 cholesterol ester transfer protein neutralize all of the cholesterol ester and triglyceride transfer activities in human plasma (1988) J Biol Chem, 263, pp. 5020-5023Swenson, T.L., Brocia, R.W., Tall, A.R., Plasma cholesteryl ester transfer protein has binding sites for neutral lipids and phospholipids (1988) J Biol Chem, 263, pp. 5150-5157Lagrost, L., Athias, A., Gambert, P., Lallemant, C., Comparative study of phospholipid transfer activities mediated by cholesteryl ester transfer protein and phospholipid transfer protein (1994) J Lipid Res, 35, pp. 825-835Tato, F., Vega, G.L., Grundy, S.M., Determinants of plasma HDL-cholesterol in hypertriglyceridemic patients (1997) Arterioscler Thromb Vasc Biol, 17, pp. 56-63Tall, A.R., Forester, L.R., Bongiovanni, G.L., Facilitation of phosphatidylcholine transfer into HDL lipoproteins by an apolipoprotein in the density 1.20-1.26 g/ml fraction of plasma (1983) J Lipid Res, 24, pp. 277-289Albers, J.J., Tollefson, J.H., Chen, C.H., Steinmetz, A., Isolation and characterization of human plasma lipid transfer proteins (1984) Arteriosclerosis, 4, pp. 49-58Guyard-Dangremont, V., Desrumaux, C., Gambert, P., Lallemant, C., Lagrost, L., Phospholipid and cholesteryl ester transfer activities in plasma from 14 vertebrate species. Relation to atherogenesis susceptibility (1998) Comp Biochem Physiol Biochem Mol Biol, 120, pp. 517-525Tall, A.R., Krumholz, S., Olivecrona, T., Deckelbaum, R.J., Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between VLDL and HDL lipoproteins during lipolysis (1985) J Lipid Res, 26, pp. 842-851Nishida, H.I., Nishida, T., Phospholipid transfer protein mediates transfer of not only phosphatidylcholine but also cholesterol from phosphatidylcholine-cholesterol vesicles to high density lipoproteins (1997) J Biol Chem, 272, pp. 6959-6964Lagrost, L., Desrumaux, C., Masson, D., Deckert, V., Gambert, P., Structure and function of the plasma phospholipid transfer protein (1998) Curr Opin Lipidol, 9, pp. 203-209Albers, J.J., Tu, A.Y., Paigen, B., Chen, H., Cheung, M.C., Marcovina, S.M., Transgenic mice expressing human phospholipid transfer protein have increased HDL/non-HDL cholesterol ratio (1996) Int J Clin Lab Res, 26, pp. 262-267Foger, B., Santamarina-Fojo, S., Shamburek, R.D., Parrot, C.L., Talley, G.D., Brewer Jr., H.B., Plasma phospholipid transfer protein. Adenovirus-mediated overexpression in mice leads to decreased plasma high density lipoprotein (HDL) and enhanced hepatic uptake of phospholipids and cholesteryl esters from HDL (1997) J Biol Chem, 272, pp. 27393-27400Redgrave, T.G., Small, D.M., Quantitation of the transfer of surface phospholipid of chylomicrons to the HDL lipoprotein fraction during the catabolism of chylomicrons in the rat (1979) J Clin Invest, 64, pp. 162-171Tall, A.R., Green, P.H., Glickman, R.M., Riley, J.W., Metabolic fate of chylomicron phospholipids and apoproteins in the rat (1979) J Clin Invest, 64, pp. 977-989Tall, A.R., Blum, C.B., Forester, G.P., Nelson, C.A., Changes in the distribution and composition of plasma HDL liproteins after ingestion of fat (1982) J Biol Chem, 257, pp. 198-207Groot, H., Scheek, L.M., Effects of fat ingestion on HDL profiles in human sera (1984) J Lipid Res, 25, pp. 684-692Brunzell, J.D., Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome (1995) Metabolic & Molecular Bases of Inherited Disease, pp. 1913-1932. , Scriver, CR, Beaudet, AL, Sly, WS, ed, McGraw-Hill Inc, New York, 7th edBijvoet, S., Gagne, S.E., Moorjani, S., Gagne, C., Henderson, H.E., Fruchart, J.C., Dallongeville, J., Hayden, M.R., Alterations in plasma lipoproteins and apolipoproteins before the age of 40 in heterozygotes for lipoprotein lipase deficiency (1996) J Lipid Res, 37, pp. 640-650Kuusi, T., Ehnholm, C., Viikari, J., Harkonen, R., Vartiainen, E., Puska, P., Taskinen, M.-R., Postheparin plasma lipoprotein and hepatic lipase are determinants of hypo- and hyperalphalipoproteinemia (1989) J Lipid Res, 30, pp. 1117-1126Liu, S., Jirik, F.R., LeBoeuf, R.C., Henderson, H., Castellani, L.W., Lusis, A.J., Ma, Y., Kirk, E., Alteration of lipid profiles in plasma of transgenic mice expressing human lipoprotein lipase (1994) J Biol Chem, 269, pp. 11417-11424Weinstock, P.H., Bisgaier, C.L., Aalto-Setala, K., Radner, H., Ramakrishnan, R., Levak-Frank, S., Essenburg, A.D., Breslow, J.L., Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes (1995) J Clin Invest, 96, pp. 2555-2568Applebaum-Bowden, D., Kobayashi, J., Kashyap, V.S., Brown, D.R., Berard, A., Meyn, S., Parrott, C., Santamarina-Fojo, S., Hepatic lipase gene therapy in hepatic lipase-deficient mice. Adenovirus-mediated replacement of a lipolytic enzyme to the vascular endothelium (1996) J Clin Invest, 97, pp. 799-805Gillett, M.P., Vieira, E.M., Dimenstein, R., The phospholipase activities present in preheparin mouse plasma are inhibited by antiserum to hepatic lipase (1993) Int J Biochem, 25, pp. 449-453Ha, Y.C., Barter, P.J., Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species (1982) Comp Biochem Physiol B, 71, pp. 265-269Clee, S.M., Zhang, H., Bissada, N., Miao, L., Ehrenborg, E., Benlian, P., Shen, G.X., Hayden, M.R., Relationship between lipoprotein lipase and HDL lipoprotein cholesterol in mice: Modulation by cholesteryl ester transfer protein and dietary status (1997) J Lipid Res, 38, pp. 2079-2089Oliveira, H.C.F., Hirata, M.H., Redgrave, T.G., MaranhĂŁo, R.C., Competition between chylomicrons and their remnants for plasma removal: A study with artificial emulsion models of chylomicrons (1988) Biochim Biophys Acta, 958, pp. 211-217Nakandakare, E.R., Lottenberg, S.A., Oliveira, H.C.F., Bertolami, M.C., Vasconcelos, K.S., Sperotto, G., QuintĂŁo, E.C., Simultaneous measurements of chylomicron lipolysis and remnant removal using a doubly labeled artificial lipid emulsion: Studies in normolipidemic and hyperlipidemic subjects (1994) J Lipid Res, 35, pp. 143-152Jiao, S., Cole, T.G., Kitchens, R.T., Pfleger, B., Schonfeld, G., Genetic heterogeneity of lipoproteins in inbred strains of mice: Analysis by gel-permeation chromatography (1990) Metabolism, 39, pp. 155-160Ehnholm, C., Kuusi, T., Preparation, characterization and measurement of hepatic lipase (1986) Methods Enzymol, 129, pp. 716-738Oliveira, H.C.F., QuintĂŁo, E.C., 'In vitro' cholesteryl ester bidirectional flow between high-density lipoproteins and triglyceride-rich emulsions: Effects of particle concentration and composition, cholesteryl ester transfer activity and oleic acid (1996) J Biochem Biophys Methods, 32, pp. 45-57Huff, M.W., Miller, D.B., Wolf, B.M., Connelly, P.W., Sawyez, C.G., Uptake of hypertriglyceridemic VLDL and their remnants by HepG2 cells: The role of lipoprotein lipase, hepatic triglyceride lipase, and cell surface proteoglycans (1997) J Lipid Res, 38, pp. 1318-1333Marques-Vidal, P., Jauhiainen, M., Metso, J., Ehnholm, C., Transformation of HDL2 particles by hepatic lipase and phospholipid transfer protein (1997) Atherosclerosis, 133, pp. 87-96Murdoch, S.J., Breckenridge, W.C., Effect of lipid transfer proteins on lipoprotein lipase induced transformation of VLDL and HDL (1996) Biochim Biophys Acta, 1303, pp. 222-232Murdoch, S.J., Breckenridge, W.C., Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL (1995) Atherosclerosis, 118, pp. 193-212Patsch, J.R., Gotto Jr., A.M., Olivercrona, T., Eisenberg, S., Formation of HDL2-like particles during lipolysis of VLDL in vitro (1978) Proc Natl Acad Sci USA, 75, pp. 4519-4523Gillett, M.P., Costa, E.M., Owen, J.S., The phospholipase activities present in preheparin mouse plasma are inhibited by antiserum to hepatic lipase (1980) Biochim Biophys Acta, 617, pp. 237-244Peterson, J., Bengtsson-Olivecrona, G., Olivecrona, T., Mouse preheparin plasma contains high levels of hepatic lipase with low affinity for heparin (1986) Biochim Biophys Acta, 87, pp. 865-870O'Meara, N.M., Cabana, V.G., Lukens, J.R., Loharikar, B., Forte, T.M., Polonsky, K.S., Getz, G.S., Heparin-induced lipolysis in hypertriglyceridemic subjects results in the formation of atypical HDL particle (1994) J Lipid Res, 35, pp. 2178-219

    Illness perceptions of COVID-19 in Europe: Predictors, impacts and temporal evolution

    Get PDF
    Objective: Illness perceptions (IP) are important predictors of emotional and behavioral responses in many diseases. The current study aims to investigate the COVID-19-related IP throughout Europe. The specific goals are to understand the temporal development, identify predictors (within demographics and contact with COVID-19) and examine the impacts of IP on perceived stress and preventive behaviors. Methods: This was a time-series-cross-section study of 7, 032 participants from 16 European countries using multilevel modeling from April to June 2020. IP were measured with the Brief Illness Perception Questionnaire. Temporal patterns were observed considering the date of participation and the date recoded to account the epidemiological evolution of each country. The outcomes considered were perceived stress and COVID-19 preventive behaviors. Results: There were significant trends, over time, for several IP, suggesting a small decrease in negativity in the perception of COVID-19 in the community. Age, gender, and education level related to some, but not all, IP. Considering the self-regulation model, perceptions consistently predicted general stress and were less consistently related to preventive behaviors. Country showed no effect in the predictive model, suggesting that national differences may have little relevance for IP, in this context. Conclusion: The present study provides a comprehensive picture of COVID-19 IP in Europe in an early stage of the pandemic. The results shed light on the process of IP formation with implications for health-related outcomes and their evolution. © Copyright © 2021 Dias Neto, Nunes da Silva, Roberto, Lubenko, Constantinou, Nicolaou, Lamnisos, Papacostas, Höfer, Presti, Squatrito, Vasiliou, McHugh, MonestÚs, Baban, Alvarez-Galvez, Paez-Blarrina, Montesinos, Valdivia-Salas, Ori, Lappalainen, Kleszcz, Gloster, Karekla and Kassianos

    Breakup reaction models for two- and three-cluster projectiles

    Full text link
    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroedinger equation is solved with the projectile continuum approximated by square-integrable states. These models are first illustrated by applications to two-cluster projectiles for studies of nuclei far from stability and of reactions useful in astrophysics. Recent extensions to three-cluster projectiles, like two-neutron halo nuclei, are then presented and discussed. We end this review with some views of the future in breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be published as a volume of "Lecture Notes in Physics" (Springer

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore