76 research outputs found

    Influence of the sodium/proton replacement on the structural, morphological and photocatalytic properties of titanate nanotubes

    Full text link
    Titanate nanotubes (TNT) with different sodium contents have been synthesised using a hydrothermal approach and a swift and highly controllable post-washing processes. The influence of the sodium/proton replacement on the structural and morphological characteristics of the prepared materials was analysed. Different optical behaviour was observed depending on the Na+/H+ samples' content. A band gap energy of 3.27\pm0.03 eV was estimated for the material with higher sodium content while a value of 2.81\pm0.02 eV was inferred for the most protonated material, which therefore exhibits an absorption edge in the near visible region. The point of zero charge of the materials was determined and the influence of the sodium content on the adsorption of both cationic and anionic organic dyes was studied. The photocatalytic performance of the TNT samples was evaluated in the rhodamine 6G degradation process. Best photodegradation results were obtained when using the most protonated material as catalyst, although this material has shown the lowest R6G adsorption capability.Comment: 22 pages, 8 figures, accepted for publication in Journal of Photochemistry and Photobiology A: Chemistr

    Synthesis of titanate nanofibers co-sensitized with ZnS and Bi2S3 nanocrystallites and their application on pollutants removal

    Full text link
    The synthesis of nanocomposite materials combining titanate nanofibers (TNF) with nanocrystalline ZnS and Bi2S3 semiconductors is described in this work. The TNF were produced via hydrothermal synthesis and sensitized with the semiconductor nanoparticles, through a single-source precursor decomposition method. ZnS and Bi2S3 nanoparticles were successfully grown onto the TNF's surface and Bi2S3-ZnS/TNF nanocomposite materials with different layouts were obtained using either a layer-by-layer or a co-sensitization approach. The samples' photocatalytic performance was first evaluated through the production of the hydroxyl radical using terephthalic acid as probe molecule. All the tested samples show photocatalytic ability for the production of this oxidizing species. Afterwards, the samples were investigated for the removal of methylene blue. The nanocomposite materials with best adsorption ability for the organic dye were the ZnS/TNF and Bi2S3ZnS/TNF. The removal of the methylene blue was systematically studied, and the most promising results were obtained considering a sequential combination of an adsorption-photocatalytic degradation process using the Bi2S3ZnS/TNF powder as a highly adsorbent and photocatalyst material.Comment: 26 pages, 10 figure

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore